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ABSTRACT

We introduce a number of new tools for the study of relatively hyperbolic
groups. First, given a relatively hyperbolic group G, we construct a nice
combinatorial Gromov hyperbolic model space acted on properly by G,
which reflects the relative hyperbolicity of G in many natural ways. Sec-
ond, we construct two useful bicombings on this space. The first of these,
preferred paths, is combinatorial in nature and allows us to define the
second, a relatively hyperbolic version of a construction of Mineyev.

As an application, we prove a group-theoretic analog of the Gromov-
Thurston 27 Theorem in the context of relatively hyperbolic groups.
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1. Introduction

A finitely generated group is word hyperbolic [16] if it acts properly and
cocompactly on a metric space (e.g., its Cayley graph) satisfying a certain coarse
geometric property called Gromov hyperbolicity (Definition 2.6 below). Two
spaces acted on properly and cocompactly by the same group will have the
same coarse geometry, so word hyperbolicity depends only on the group in
question. For example, the fundamental group of a compact hyperbolic n-
manifold acts properly and cocompactly on the hyperbolic space H", and so is
word hyperbolic. If G is the fundamental group of a non-compact but finite
volume hyperbolic n-manifold, then G also has an apparently natural action
on H™. We say that groups with such actions on Gromov hyperbolic spaces
are relatively hyperbolic. Considering the case of fundamental groups of
finite area hyperbolic surfaces, we see that it is necessary first to specify a
collection of “peripheral” subgroups to determine an action up to some kind
of coarse equivalence. Thus it makes no real sense to ask whether a group is
relatively hyperbolic, but only to ask whether a group is hyperbolic relative to a
collection of subgroups. There are several competing ways to say what it means
for a group to be (strongly) hyperbolic relative to a collection of subgroups
[16, 13, 4]. These definitions are now all known to be equivalent.! (See Section
2.9 for precise definitions and more examples of relatively hyperbolic groups.)
This paper has three main purposes. First, we introduce a new space (the
“cusped space”) for studying relatively hyperbolic groups (Section 3). Second,
we construct a pair of useful bicombings on this space (Sections 5 and 6). Third,
we extend Thurston’s Hyperbolic Dehn Surgery Theorem to the context of

L' In [35], Osin gives a more general definition where it is not assumed that parabolic
subgroups are finitely generated, or that there are finitely many conjugacy classes of
parabolic subgroups. Since the current paper appeared as a preprint, Chris Hruska [23]
has extended the definition proposed here (Theorem 3.25.(5)) to the infinitely generated
setting, and proved its equivalence to Osin’s definition.
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(torsion-free) relatively hyperbolic groups (Part 2). We discuss these now in
turn.

1.1. A NEW GEOMETRY FOR RELATIVELY HYPERBOLIC GROUPS. Roughly
speaking, a group G is hyperbolic relative to a collection P of subgroups if
the geometry of G is d-hyperbolic, except for that part corresponding to the
subgroups in P. In Subsection 3.1 we define combinatorial horoballs which
are a way of embedding any graph into a d-hyperbolic graph. We build the
cusped space by gluing onto the Cayley graph of G a collection of combinato-
rial horoballs, one for each coset of each subgroup in P. The resulting space is
Gromov hyperbolic if and only if G is hyperbolic relative to P. In case the space
is Gromov hyperbolic, the action of G on the space satisfies the conditions given
in Gromov’s original definition of relative hyperbolicity (Definition 2.38). The
cusped space thus combines the most useful combinatorial and coarse geometric
aspects of relatively hyperbolic groups. A closely related construction appears
in work of Cannon and Cooper [7] (also see [38] for another related construc-
tion). As in [7], if G is the fundamental group of a finite volume hyperbolic
n-manifold, and P consists of the fundamental groups of the cusps, the space
we build is quasi-isometric to H"™, though we do not provide a proof of this here.

Part of the novelty of the cusped space compared to the one in [7] is that it is
a graph (metrized so the length of each edge is 1), so that the metric and combi-
natorial aspects harmonize with each other more easily. This allows us to more
easily adapt a number of constructions and results in word hyperbolic groups
to the relative setting. In particular, we consider combinatorial isoperimetric
inequalities (Subsection 2.6), homological isoperimetric inequalities (Subsection
2.7) and a construction of Mineyev from [29]. Considering the different types of
isoperimetric inequalities and spaces, we get a number of new characterizations
of relatively hyperbolic groups.

Let G be a finitely generated group which is finitely presented relative to
a collection P = {Py,...,P,} of finitely generated subgroups (see Subsection
2.4). Let I be the coned-off Cayley graph for G with respect to P (see Definition
2.41), C the coned-off Cayley complex (see Definition 2.47), and let X be the
cusped space associated to G and P (defined in Section 3).

Then we have

THEORME 3.25: The following are equivalent:



Vol. 168, 2008 RELATIVELY HYPERBOLIC DEHN FILLING 321
1) G is hyperbolic relative to P in the sense of Gromov;

2) G is hyperbolic relative to P (i.e., I' is Gromov hyperbolic and fine);

3) C satisfies a linear combinatorial isoperimetric inequality;

5) XM is Gromov hyperbolic;
6
7

(1)

(2)

3) ¢

(4) C satisfies a linear homological isoperimetric inequality;
(5)

(6) X satisfies a linear combinatorial isoperimetric inequality;
(7)

X satisfies a linear homological isoperimetric inequality.

See Subsection 2.6 and Definition 2.28 for definitions of linear isoperimetric
inequalities (both combinatorial and homological).

The equivalence of (1) and (2) is by now well-known (see, for example, [10,

Appendix]). As far as we are aware, the equivalence of (2) and (3) has not
appeared elsewhere, though it is implicit in [35]. What is really novel about
Theorem 3.25 is the space X and the use of homological isoperimetric inequal-
ities.
1.2. BICOMBINGS ON RELATIVELY HYPERBOLIC GROUPS. The second main
purpose of this paper is the construction in Sections 4—6 of a pair of useful
bicombings on the cusped space. In Section 4, we prove a general result about
convex sets and between-ness in a Gromov hyperbolic space T. Given a fam-
ily G of ‘sufficiently separated’ convex sets we construct, for any pair of points
a,b € T, a canonical collection of sets in G which are ‘between’ @ and b. These
collections satisfy a number of axioms, and allow a great deal of combinatorial
control over triangles in T built from quasi-geodesics using our construction.

This analysis is carried out in Section 5, where we define preferred paths
for our space X. These give a G-equivariant bicombing of X by uniform quasi-
geodesics, whose intersection with horoballs is very controlled (this is where the
results from Section 4 are used). In particular (possibly partially ideal) triangles
whose sides are preferred paths have very well controlled combinatorial structure
(see Subsection 5.2 for details on this).

We expect that the construction in Section 4 and that of preferred paths in
Section 5 will have many applications. The first is the bicombing ¢ which is
defined in Section 6. This gives a relatively hyperbolic version of a construction
of Mineyev from [29]. Applications of Mineyev’s construction are myriad (see,
for example, [29, 30, 31, 32, 33, 42]). It can reasonably be expected that many
of these results can be extended to the relatively hyperbolic setting using the
bicombing from Section 6 of this paper, or variations on it. In particular, in [19],
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we define a homological bicombing on the coned-off Cayley graph of a relatively
hyperbolic group (using the bicombing from this paper in an essential way)
in order to investigate relative bounded cohomology and relatively hyperbolic
groups, in analogy with [29] and [30]. Also, in [17], the first author proves that
if the parabolic subgroups of G act ‘nicely’ on a strongly bolic metric space (as
defined by Lafforgue [28]) then so does G. Using the work of Lafforgue [28] and
Drutu and Sapir [11], this has implications for the Baum-Connes conjecture for
certain relatively hyperbolic groups.

It is also worth noting that in Part 2 of this paper, the major tool is preferred
paths. The only time we need the homological bicombing (which is the ana-
logue of Mineyev’s construction) is in the proof of Theorem 11.11. Otherwise,
we use only the results from Section 5, which have no relation to Mineyev’s
construction.

1.3. RELATIVELY HYPERBOLIC DEHN FILLING. Part 2 of this paper is devoted
to another application of the constructions of Part 1. We investigate a group
theoretic analogue of Dehn filling, which is the third and final purpose of this
paper.

We first briefly remind the reader what is meant by “Dehn filling” in the
context of 3-manifolds. Suppose that M is a compact 3-manifold, with some
component T of M homeomorphic to a torus. Let a be an essential simple
closed curve in T. Let W be a solid torus, and p a meridian for W (a curve
which bounds an embedded disk in W), and let ¢: (0W,u) — (T,a) be a
homeomorphism of pairs. The 3-manifold

M(e) = MU, W

obtained by gluing using ¢ is called the Dehn filling of M along «, and de-
pends up to homeomorphism only on the homotopy class of o in T'. Thurston’s
Hyperbolic Dehn Surgery Theorem [40] says that if the interior of M admits a
hyperbolic metric, then so does the interior of M («), for all but finitely many
choices of a. The number of curves to be excluded and the relationship between
the geometry of M and that of M («) can be made quite precise (see for example
22)).

On the level of fundamental groups, 71 (M (a)) = m1(M)/{a)), where a is an
element of 71 (M) whose conjugacy class is represented by «. One of the group
theoretic statements implied the Hyperbolic Dehn Surgery Theorem is
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THEOREM 1.1 ([40]): Let G = w1 (M) where M is a hyperbolic 3-manifold with
a single torus cusp C, and let P = m1(C) 2 Z @ Z be the cusp subgroup. Then
for all but finitely many a € P, G/{(a)) is infinite, non-elementary, and word
hyperbolic.

This group theoretic statement finds its strongest quantitative formulation in
the “6 Theorem” independently due to Lackenby and Agol [26, 1].

Theorem 1.1 puts the conclusion of the Hyperbolic Dehn Surgery Theorem in
an algebraic context. Koji Fujiwara asked whether there was an algebraic ana-
logue of this theorem which also puts the hypotheses into an algebraic context.
We learned of this question from Danny Calegari.

As an answer to this question, we provide the following result (where | K;|p,
denotes the minimal length of a nontrivial element of K; using the word metric
on P; with respect to the generating set S N P;; see Definition 7.1):

THEOREM 7.2: Let G be a torsion-free group, which is hyperbolic relative to a
collection P = {Py,...,P,} of finitely generated subgroups. Suppose that S is
a generating set for G so that for each 1 <i < n we have P, = (P;N S).

There exists a constant B depending only on (G, P) so that for any collection
{K;}", of subgroups satisfying

e K;<dP;; and
o |K;|p, > B,

then the following hold, where K is the normal closure in G of K1 U --- U K,,.
(1) The map P;/K; “ G/K given by pK; — pK is injective for each i.
(2) G/K is hyperbolic relative to the collection

It is well-known (see, for example, [13, Theorem 3.8]) that a group which is
hyperbolic relative to a collection of word hyperbolic subgroups is word hyper-
bolic. Thus, an immediate corollary of Theorem 7.2 is the following:

COROLLARY 1.2: Under the hypotheses of Theorem 7.2, if each of the P;/K;
are themselves word hyperbolic, then G /K is word hyperbolic.

Together with Theorem 11.12 (non-elementariness), Corollary 1.2 unifies a
number of known results:
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(1) We have already remarked that Theorem 7.2 generalizes Theorem 1.1.
However, since we make no assumptions about the subgroups P;, The-
orem 7.2 also generalizes the results of Lackenby from [27] about fill-
ing 3-manifolds some of whose boundary components are higher genus
surfaces (although we do not obtain such nice quantitative bounds as
Lackenby).

(2) Corollary 1.2 also generalizes some known results about hyperbolic
groups. For example, modulo the extra torsion-free hypothesis, Theo-
rem 7.2 is a generalization of statements (1)—(3) of [16, Theorem 5.5.D,
p. 149]. Of interest in this context is that we make no use whatsoever
of small cancellation techniques.

(3) Much of the group-theoretic content of many “CAT(—1)” or “CAT(0)
with isolated flats” filling constructions on hyperbolic manifolds with
torus cusps is also contained in Theorem 7.2. Examples of this are in
[39, 34]. (See also Remark 1.6.)

We now make a few more remarks about Theorem 7.2.

Remark 1.3: The “short” fillings really must be excluded in Theorem 7.2, as
can be seen, for instance, from the many examples of exceptional fillings of
hyperbolic 3-manifolds. By considering fillings of the Hopf link, we can see that
it is also important that each of the lengths |K;|p, is large.

An even simpler example is given by G equal to the free group (z,y), and
P ={P = (x),P, = (y),Ps = (zy)}. Choosing K; = (z7), K> = (y?), and
K3 = ((zy)"), the quotient G/K will be infinite and word hyperbolic if and
only if 1/p+1/g+1/r < 1. This occurs if all three of p, ¢, and r are at least 4,
but of course if p = ¢ = 2, then r can be arbitrarily large while G/K remains
finite.

Remark 1.4: Since we have been, from the very beginning, working in the coarse
world of d-hyperbolic spaces, we have no hope of obtaining the fine control over
constants, as obtained in [26, 1, 22]. Therefore, we have made very little attempt
throughout this paper to make our constants optimal.

However, it is worth remarking that there are some delicate interdependencies
between some of the constants we use.

Remark 1.5: Denis Osin has independently proved Theorem 7.2; see [36]. In
fact, Osin works in a somewhat more general setting, in two respects.
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First, Osin has a more general notion of relative hyperbolicity, which allows
infinitely many (possibly infinitely generated) parabolics. It can be shown (and
this is really implicit in Osin’s proof) that the appropriate statement for infin-
itely many infinitely generated parabolics follows from the statement for finitely
many finitely generated parabolics.?

Second, and more seriously, Osin makes no assumption of torsion-freeness in
[36]. We believe that our methods apply (with appropriate modification) to the
non-torsion-free case, at least to prove the analogue of Theorem 7.2, but at such
a cost in clarity and brevity that we have elected to deal only with the torsion-
free case. We have tried to make explicit our use of torsion-freeness and how
one might go about avoiding it (see Remarks 3.29, 5.2, 5.8, 5.45, 6.12, 5.18,8.8
and 9.10; on first reading, we recommend ignoring all of these comments; to
facilitate this, they are all labelled as ‘Remark (about torsion)’). Certain of our
results, which are not used in the proof of Theorem 7.2, must be considerably
rephrased in the presence of torsion (see especially Theorem 9.3).

Note also that Osin’s main theorem [36, Theorem 1.1] states that given a
finite set F C G, there is a B so that under the conditions of Theorem 7.2 the
map G — G/K is injective on F. This is Corollary 9.7 below.

Remark 1.6: It is worth noting that, even when starting with a rank one lo-
cally symmetric space, our group-theoretic version of filling produces hyperbolic
groups in many situations where the existence a locally CAT(—1) filling is not
at all clear; see the non-existence results of [25]. The advantage of a CAT(—1)
filling is that information about the fundamental group can be obtained from
local information about the locally CAT(—1) model. For more on this, see [14],
which is in preparation.

2. Preliminaries

2.1. COARSE GEOMETRY. All metric spaces will be assumed to be complete
geodesic metric spaces, and the distance between two points x and y will usually
be denoted d(z,y).

Definition 2.1: If X is a metric space, A C X and R > 0, then let Nr(A) be
the R-neighborhood of A in X.

2 For more on this, see [21].
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Definition 2.2: If X and Y are metric spaces, K > 1 and C > 0, a (K,C)-
quasi-isometric embedding of X into Y is a function ¢: X — Y so that for
all z1, 20 € X

%d(ml,xg) —C < dlg(a1), q(x2)) < Kd(z1, ) + C

If in addition the map ¢ is C-coarsely onto, i.e., No(¢(X)) =Y — g, it is
called a (K, C')-quasi-isometry. The two metric spaces X and Y are then said
to be quasi-isometric to one another. This is a symmetric condition.

Definition 2.3: A (K, C)-quasi-geodesic in X is a (K, C')-quasi-isometric em-
bedding v: R — X. We will occasionally abuse notation by referring to the
image of v as a quasi-geodesic.

A (K, C)-quasi-geodesic ray is a (K, C)-quasi-isometric embedding

p: Ry — X.
2.2. GROMOV HYPERBOLIC SPACES. Given a geodesic triangle A(z,y, z) in any
geodesic metric space, there is a unique comparison tripod, Y,,., a metric

tree so that the distances between the three extremal points of the tree, T, ¥
and Z , are the same as the distances between z, y and z (see Figure 1). There

Aa:yz )/xyz

|

Figure 1. A triangle and its comparison tripod

is a unique map

m: Az, y,2) — Yoy
which takes = to @, y to ¥ and z to z, and which restricts to an isometric
embedding on each side of A(x,y, 2).

Definition 2.4: Let § > 0. The triangle A(x,y, z) is 6-thin if the diameter of
7~1(p) is at most J for every point p € Yy ..
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Remark 2.5: Any triangle which is §-thin is also §-slim, i.e., any side of the
triangle is contained in the d-neighborhood of the union of the other sides. More
generally, a geodesic n-gon is (n — 2)d-slim. Also, for every § there is a ¢’ so
that d-slim triangles are ¢’-thin (see [5, Proposition IIL.H.1.17, p. 408]).

Definition 2.6: A geodesic metric space X is d-hyperbolic if every geodesic
triangle in X is 0-thin. If § is unimportant we may simply say that X is
Gromov hyperbolic.

See [5, Chapter IIL.H] for the background and many basic results about Gro-
mov hyperbolic spaces.

Definition 2.7: Let z, y, z € X. The Gromov product of z and y with
respect to z is (z,9). = 2(d(z,z) + d(y,z) — d(z,y)). Equivalently, (z,y). is
the distance from Z to the central vertex of the comparison tripod Y. for any
geodesic triangle A(x,y, 2).

Definition 2.8: Fix some z € X, where X is some Gromov hyperbolic metric
space. We say that a sequence {x;} tends to infinity if liminf; ; oo (2, z;). =
0o. On the set of such sequences we may define an equivalence relation: {x;} ~
{y;} if liminf; ;o0 (24, y;). = 0o. The Gromov boundary of X, also written
0X, is the set of equivalence classes of sequences tending to infinity. The Gro-
mov boundary does not depend on the choice of z (see [5, Proposition III.H.3.7]).

Remark 2.9: We may topologize X U 9X so that if {z;} tends to infinity, then
lim; oo #; = [{z;}]. Furthermore, if v: [0,00) — X is a quasi-geodesic ray,
then for any sequence {t;} with lim;_, ., t; = oo, the sequence {v(¢;)} tends to
infinity. The point {y(¢;)} € X does not depend on the choice of {¢;}. An
isometric action on X extends to a topological action on the boundary.

Remark 2.10: We will implicitly assume, whenever we say that a space is 0-
hyperbolic, that triangles are §-thin and §-slim.

This can be achieved by replacing § by some larger constant.

We will also assume that § is an integer.

One can also consider geodesic “triangles” in a Gromov hyperbolic space X
whose vertices are ideal, i.e., points in 0X. The following is a simple exercise
in §-slim triangles.
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LEMMA 2.11: A geodesic triangle in a §-hyperbolic space with some or all
vertices ideal is 36-slim.

2.3. CAYLEY GRAPH. Although there is little difference between various defini-
tions of the Cayley graph, it is convenient to fix one here. By “G is generated
by S”, we mean that there is a surjection

m: F(S) — G,

where F(5) is the free group on the set S. If S C G, then we implicitly assume
7 is the homomorphism induced by inclusion. The Cayley graph of G with
respect to S, written I'(G, 5), is the graph with vertex set G, and edge set
G x S. The edge (g, s) connects the vertices g and gn(s).

2.4. RELATIVE PRESENTATIONS. We recall the following definitions of Osin.
(We change the notation slightly.)

Definition 2.12 ([35, Definition 2.1]): Let G be a group, {Hx}xea a collection
of subgroups of G, and A a subset of G. We say that A is a relative generating
set for G with respect to {H}xen if G is generated by

AU ( U HA) .
AEA
We will be concerned with situations where the index set A is finite.

Definition 2.13 (Osin): Suppose that G is generated by A with respect to
{H)}xea- Then G is a quotient of

F =F(A)* (xaeaHy),

where F(A) is the free group on the alphabet A. Suppose that N is the kernel
of the canonical quotient map from F' to G. If N is the normal closure of the
set R then we say that

<~A7 {H)\}AEA | R>7

is a relative presentation for G with respect to {H)}xea.
We say that G is finitely presented relative to {H)} e if we can choose
R to be finite.

The following lemma is essentially contained in Theorem 2.44 of [35].
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LEMMA 2.14: If G is a finitely generated group, finitely presented relative to
a collection of nontrivial subgroups {H}xen, then A is finite and each H) is
finitely generated.

Proof. By Theorem 2.44 of [35], there is a finite subset Ag C A so that
G = (*aeaaoHa) * Go,

where Gy is generated by |J, . A, Hx and the finite relative generating set for G.

By Grushko’s Theorem, and the fact that G is finitely generated, A \ Ag is
also finite. Moreover, each Hy for A € A \ Ay is finitely generated, as is Gy.

Osin’s theorem further asserts that GGy has the structure of a tree of groups,
where each edge group is finitely generated. The collection of vertex groups is
{Hx}ren, U {Q} where @ is some finitely generated group. Since Gy is finitely
generated, an elementary application of Bass-Serre theory shows that each H)
is finitely generated. ]

Definition 2.15: Suppose that G is finitely generated, and also finitely presented
relative to {Hy, ..., Hy}. By Lemma 2.14, each of the H; is finitely generated.
In this situation, we usually fix a finite generating set S for G so that for each
1 <4 < m we have (SN H;) = H;. We call such a set S a compatible
generating set for G.

Definition 2.16 (Relative Cayley complex): Suppose that G is finitely presented
relative to the finitely generated subgroups {Hj, ..., H,, }, and that S is a finite
compatible generating set for G. Let

(A {Hy,...,Hn} | R),

be a finite relative presentation for G, where A C S is a set of relative generators
for G.

Let I' = T'(G, S) be the Cayley graph of G with respect to S. The elements
of R correspond to loops in I'. We glue a 2-cell to each such loop, in a manner
equivariant under the G-action on I'. The resulting 2-complex is called the
relative Cayley complex of G with respect to (S,{H,...,Hy} | R), and is
denoted C(G, S, R).

In general, the relative Cayley complex of G will not be simply-connected.
This will only be the case if (S | R) is already a presentation for G.
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In Subsection 2.9 below, we define a simply-connected 2-complex C associated
to a finite relative presentation of relatively hyperbolic group, starting with the
relative Cayley complex.

Also, in Section 3, we construct another simply-connected 2-complex X, again
starting with a finite relative presentation of a relatively hyperbolic group.

The spaces X and C' both contain copies of the relative Cayley complex.

2.5. COMBINATORIAL MAPS, CHAINS, ETC.

Definition 2.17: Let Y be a cell complex, and let w = ), a;w; be a real cellular
n-chain. The 1-norm of w is

wit = levl.
7

Definition 2.18: Suppose that Y is a 2-complex and that p: I — Y1) is a
combinatorial path, in the sense that there is a cell structure on I so that p
sends each edge either to an edge or a vertex of Y.

The length, or 1-norm of p is then the number of 1-cells in I which are
mapped onto edges of Y. We denote the 1-norm of p by |p|;.

The map p induces an obvious cellular 1-chain p on Y (using the orientation
on I).

Definition 2.19: Suppose that Y is a 2-complex and ¥ an oriented, cellulated
surface. A combinatorial map is a map f: ¥ — Y which sends each vertex
of ¥ to a vertex of Y, each edge of ¥ to an edge or a vertex of Y and each
2-cell to a 2-cell, an edge, or a vertex of Y. Furthermore, if o is a cell in X
which is sent to a cell of the same dimension then the interior of o is mapped
homeomorphically by f onto its image.

The area of a combinatorial map f: ¥ — Y is the number of 2-cells in X
which are mapped onto 2-cells. When we refer to the ‘1-norm’ of a map between
2-complexes, we mean the area.

As in the 1-dimensional setting, a combinatorial map f: ¥ — Y induces an
integral, cellular 2-chain f on Y.

Remark 2.20: If f is a combinatorial map of an interval or a surface into a
2-complex Y then |f|; < |f]:.
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Remark 2.21: Throughout this paper we are somewhat cavalier about the dif-
ference between paths as maps, paths as subsets, and 1-chains. This should not

cause any confusion.

2.6. COMBINATORIAL ISOPERIMETRIC INEQUALITIES. Any Gromov hyperbolic
space satisfies a linear coarse isoperimetric inequality (see Proposition ITII.H.2.7
in [5]). However, when we work with homological isoperimetric inequalities
below, we need to use simply connected spaces.

Thus we pause in this paragraph to consider combinatorial isoperimetric in-
equalities. There is little novel here, but it is worth noting that our spaces are
not always locally finite, are not uniformly locally finite even when they are
locally finite, and there will rarely be a proper and cocompact action on the
Gromov hyperbolic spaces in this paper. Thus we need to be slightly careful
about the hypotheses in the results below.

PROPOSITION 2.22: Let X be a simply-connected 2-complex and suppose that
XM s §-hyperbolic. Suppose further that for some K > 0, any combinatorial
loop of length at most 16§ can be filled with a combinatorial disk of area at
most K. Then any combinatorial Ioop ¢ in X can be filled with a combinatorial
disk whose area is at most K|c|;.

Proof. This is essentially Dehn’s algorithm. See the proof of [5, Proposition
IIL.H.2.7]. ]

PROPOSITION 2.23: Suppose that X is a simply connected 2-complex and that
there is a constant M > 0 so that the length of the attaching map of any 2-cell
is at most M.

If X satisfies a linear combinatorial isoperimetric inequality, then X is
d-hyperbolic for some §.

Furthermore, 6 can be calculated in terms of M and the isoperimetric constant
of X.

Proof. Follows from the proof of [5, Theorem ITI.H.2.9], or from a combinatorial
version of the proof of Theorem 2.30 below. |

2.7. HOMOLOGICAL THINGS. In [15], Gersten proves that a group is hyperbolic
if and only if it has a linear homological filling function. In this section we
recall those notions and extend them slightly in order to account for the fact
that the actions on Gromov hyperbolic spaces in this paper are rarely proper
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and cocompact (though they are usually one or the other). In this section we
prefer to work with rational coefficients. However, real or complex coefficients
would also work.

We recall some standard definitions:

Definition 2.24: Let Y be a cell complex, A a normed abelian group (with norm
Il - ), and let C,, be the set of n-cells of Y. A locally finite n-chain in Y
with coefficients in A, w is a formal sum

w = E wWeC,

ceY

where each w, € A. The chain w is said to be summable if

w1 = Z llac|| < oo.

ceY

The quantity |w|; is the norm of w. The support of w is the union in Y of
the n-cells ¢ for which w,. is nonzero.

The chains of compact support form the standard cellular chain group
Cn.(Y,Z).

We first recall a result from [30] about expressing 1-chains as sums of paths.
Note that this result is a generalization of [3, Theorem 3.3].

Definition 2.25: Suppose that T' is a graph and T is a collection of vertices. A
T-path is a directed path in I" whose initial and terminal vertices are in T' (or
are equal).

A path is simple if it has no repeated vertices.

Let f be a summable 1-chain in a graph I". Let I'(f) denote the directed
graph which is I" with an orientation chosen so that f(e) > 0 for each edge
e. Let Ty (f) be the minimal subgraph of I'(f) containing all the edges e with

fle) #0.

THEOREM 2.26 (Mineyev, Theorem 6, [30]): Let T be a graph, T' a set of vertices
in T and f a summable 1-chain on I with coefficients in Q and supp(9f) C T.

(a) There is a countable family P = {p1,p2, ...} of simple T-paths in T'; (f)
and a sequence {a;} in Q N [0,00) so that (i) f = >, a;p;; and (ii)

[fle =22 cilpilr-
(b) If f has finite support then P can be chosen to be finite.
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Definition 2.27: Suppose that f = >, a;p; expresses the 1-chain f as a sum of
1-chains a;p;, where o; € Q>¢. This sum is called coherent if |f[; = >, a;[ps|1.

Definition 2.28: Suppose that Z is a simply-connected 2-complex. We say that
Z satisfies a linear homological isoperimetric inequality if there is a con-
stant K > 0 so that for any combinatorial loop ¢ in Z there is some o € C(Z; Q)
with do = ¢, satisfying

lo)1 < K|c|s.

See [30, Theorem 7] for (many) other notions of what it might mean for a
space to have a ‘linear isoperimetric inequality’. In this paper, we exclusively
use the notion from Definition 2.28 above.

The next result follows immediately from the definitions.

LEMMA 2.29: If a simply-connected 2-complex Z satisfies a linear combinato-
rial isoperimetric inequality, then it satisfies a linear homological isoperimetric
inequality.

In [15], Gersten proves that the Cayley complex of a finitely presented group
G satisfies a linear homological isoperimetric inequality if and only if G is hy-
perbolic. This is essentially a converse to Lemma 2.29 above. In this section
we slightly generalize Gersten’s result. However, most of our work is in noting
that the proof of Gersten’s result from [30] works in our setting.

THEOREM 2.30: Suppose that Z is a simply-connected 2-complex and that
there is a constant M so that the attaching map for each 2-cell in Z has length
at most M.

Suppose further that Z satisfies a linear homological isoperimetric inequality.
Then Z(M, the 1-skeleton of Z, is §-hyperbolic for some 6.

Proof. The proof consists of noting that a number of other proofs in the litera-
ture do not rely essentially on finite valence.

The first step is to prove that if Z is not Gromov hyperbolic then for any
e > 0, there are e-thick geodesic bigons in Z. This is essentially [37, The-
orem 1.4], modified in the obvious way. Namely, for each M, define f(r) =
inf{d(y(R+r)),7(R+r))} where the infimum is taken over all positive inte-
gers R and all v, 7/, geodesics such that v(0) = 4/(0) and d(v(R),~'(R)) > 2M?>.
This is not quite the function that Papasoglu uses, but it suffices for the proof.
The remainder of the proof of this first step is identical to that in [37].
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Now follow the proof of [30, Proposition 8] to prove that if there are e-thick
bigons in Z for € > 0, then Z does not have a linear homological isoperimetric
inequality. Mineyev’s argument relies only on a bound on the length of attaching
maps for 2-cells (and not, for instance, on vertex transitivity or local finiteness).
It is certainly worth remarking that Mineyev relies on a result of Gersten [15],
which similarly requires only a bound on the attaching maps of 2-cells. n

2.8. HOMOLOGICAL BICOMBINGS. There are various notions of “bicombing” for
graphs. In particular, one can define combings made up of paths or of 1-chains.

Definition 2.31: Let T' be a graph, and let Geod(I") be the set of (oriented)
geodesics in I'. That is, each element of Geod(T') is a path o: I — T, where
I C R and o is parametrized by arc length. A geodesic bicombing on I' is a
function

v: TO % 1O — Geod(T)
so that y(z,y) is a geodesic which begins at x and ends at y.

Definition 2.32: Let I' and Geod(T') be as in Definition 2.31. Let T’ be some com-
pactification (or bordification) of T(®), and let A C T. A geodesic bicombing
on A is a function
v AXANA — Geod(T),
where A = {(z,2): x € A} and
(1) If € T then y(x,y) starts at x; otherwise, lim; .o y(x,y)(t) =
reANT.
(2) If y € T then (x,y) ends at y; otherwise, lim; .., v(x,y)(t) =y €
ANT.

Definition 2.33 ([29]): Suppose that I" is a graph, and A is a ring. Let C1(T'; A)
be the group of finite formal sums of 1-cells in I' with coefficients in A. A
homological bicombing on I is a function

q: TO x 1@ _ oy(T; A)
so that dq(a,b) =b — a.
Remark 2.34: 1t is clear that a geodesic bicombing as in Definition 2.31 gives
rise to a homological bicombing as in Definition 2.33. It is slightly less obvious

(but also true) that we can use a bicombing as in Definition 2.32 to produce
something homological.
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Definition 2.35: Let T’ be a graph and A a ring, and let C';(I'; A) be the group
of (locally finite) formal sums of 1-cells in . Let T’ be some compactification
(or bordification) of I'®) and let A C T. Let ¢ be a function

q: Ax A — Cq(T;A),

which is zero precisely on A = {(z,z): z € A}. Given R € N, z,y € A, and
z € TO et ¢z,r(z,y) be the l-chain which is equal to ¢(x,y) on the ball
of radius R about z, and zero outside it. The function ¢ is a homological
bicombing on A if it satisfies the following condition: For every x,y € A, and
z € T there is an Ry so that for every integer R > Ry, there exist 0-chains
&r,+ and &g _, each with coefficients summing to 1 so that:

(1) 9¢, r(x,y) =&r+ — Er,— for all R > Ry,
(2) any sequence {y;};2p with y; € & 4 satisfies lim; .o y; = y, and any
sequence {y; }< p with x; € & _ satisfies lim; o z; = =.

Definition 2.36: Let T' be a graph with a compactification T of T'(®), and let
A CT. Let € > 0. A homological bicombing ¢ : A x A — C1(I';R) is e-quasi-
geodesic if both

(1) g(a,b) has support in the e-neighborhood of some geodesic between a
and b, and
(2) If a, b € T then |g(a,b)|; < ed(a,b).

Remark 2.37: In general, one may also want to place constraints on the 1-norms
of finite “subsegments” of ¢(a,b), where a and b are ideal points. However, we
do not need this refinement in this paper.

2.9. RELATIVELY HYPERBOLIC GROUPS. Relatively hyperbolic groups were first
defined by Gromov in [16]. Alternative definitions were given by Farb [13] and
Bowditch [4]. These definitions are all equivalent. See [10, Appendix].

Further characterizations of relatively hyperbolic groups are given by Osin
[35], in terms of relative Dehn functions, and Yaman [41], in terms of conver-
gence group actions.

Recently there has been a large amount of interest in relatively hyperbolic
groups. (See [6], [8], [12], [18], [35], among many others).

Here is the original definition of Gromov’s [16, Section 8.6]:
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Definition 2.38: Suppose that G acts isometrically and properly on a proper,
geodesic, Gromov hyperbolic metric space X, so that the quotient is quasi-
isometric to a wedge of n rays. Let v1,...,7, be unit-speed geodesic rays in
X/G tending to distinct points in the Gromov boundary of X/G, and choose
lifts 41, . . . , ¥ to X. For each i, let e; be the point in X to which 7; limits, and
let P; be the stabilizer in G of e¢;. For each 7 define a horofunction h;: X — R
by

h;i(x) = limsup d(z,7;(t)) — t.
t—o0

The R-horoballs of X are the sub-level sets B;(R) = h; '(—oo, R) and their
G-translates. Assume that there exists a constant R so that for any g € G and
any 1, §, either gB;(R) N B;(R) is empty or i = j and g € P;. Finally, suppose
that G acts cocompactly on the complement of the union of the horoballs. Then
we say that G is hyperbolic relative to P = {P,..., P,} in the sense of
Gromov.

Definition 2.39: Suppose that G is a relatively hyperbolic group acting on the
d-hyperbolic space X as in Definition 2.38. An element g € G is called hyper-
bolic if it does not have a bounded orbit in X, and it fixes exactly two points
in 0X.

We say that G is non-elementary relatively hyperbolic if there are hy-
perbolic elements g, h in G so that Fixgx (g) N Fixgx (h) = 0.

Remark 2.40: By the usual Ping-Pong argument, if g, h are as in Definition
2.39, then there is some j > 1 so that ¢/ and h’/ generate a free group.

The following is another definition of relatively hyperbolic groups, which is a
hybrid of Farb’s [13] and of Bowditch’s [4].

Definition 2.41 (Coned-off Cayley graph): Suppose that G is a finitely generated
group, with finite generating set S. Let I'(G, S) be the Cayley graph of G with
respect to S.

Suppose that P = {Py,..., Py} is a finite collection of finitely generated
subgroups of G. We form a new graph containing I'(G, 5), called the coned-
off Cayley graph and denoted f(G, P, S) as follows:

For each ¢ € {1,...,k} and each coset gP; we add a new vertex, v,; to
I'(G, S). We also add a vertex from each element of gP; to vy ;.
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Definition 2.42 (Fine graphs; see [4, page 11]): A (not necessarily locally finite)
graph K is fine if for every edge e in I and each integer L > 0, the number of
simple simplicial loops of length at most L which contain e is finite.

Definition 2.43: Suppose that G is a finitely generated group and that P =
{P1,..., Py} is a collection of finitely generated subgroups. We say that G is
hyperbolic relative to P if the coned-off Cayley graph f(G7 P, S) is fine and
d-hyperbolic for some § > 0.

Remark 2.44: By now the class of groups which we call ‘relatively hyperbolic’
is standard. However, we should point out that, in the terminology of [13], G is
hyperbolic relative to P if and only if the coned-off Cayley graph is -hyperbolic.
Farb’s hypothesis of Bounded Coset Penetration is equivalent to fineness of r
(see, for instance, [10, Appendix]). It is shown in [6] and [10, Appendix] that
Definitions 2.38 and 2.43 are equivalent.

Whenever G is hyperbolic relative to P, we will always assume that our
(finite) generating set for G is compatible, in the sense of Definition 2.15.

We briefly list some examples of relatively hyperbolic groups (and the sub-
groups they are hyperbolic relative to):

(1) Hyperbolic groups are hyperbolic relative to the empty collection of
subgroups;

(2) Fundamental groups of geometrically finite hyperbolic manifolds are
hyperbolic relative to the cusp subgroups;

(3) Free products are hyperbolic relative to the free factors;

(4) A group which acts properly and cocompactly on a CAT(0) space with
isolated flats is hyperbolic relative to the stabilizers of maximal flats
(see [24]; and [12]);

(5) Limit groups are hyperbolic relative to maximal noncyclic abelian sub-
groups (see [2] and [9]).

In Section 3, we introduce a ‘cusped’ space, X (G, P, S), associated to a group
G and finite collection P of finitely generated subgroups. We prove that G is
hyperbolic relative to P if and only if X (G, P, S) is é-hyperbolic for some .

Remark 2.45: One of the important features of the space X defined in Section 3
below is that if G is hyperbolic relative to P, then the action of G on X (G, P, S)
satisfies the requirements of Definition 2.38 (see Theorem 3.25).
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There are a number of previous constructions of cusped spaces (for example,
Cannon and Cooper [7], Bowditch [4] and Rebbechi [38]). The novelty in our
space X is that it is a graph metrized so that edge lengths are 1. Thus we can
apply many combinatorial constructions directly, such as isoperimetric inequal-
ities (combinatorial and homological). Importantly, in Section 6 below, we can
also apply a construction of Mineyev from [29].

Another important feature of the space X is that there is a bound on the
lengths of the attaching maps of 2-cells.

By Osin [35, Theorem 1.5], relatively hyperbolic groups are always finitely
presented relative to their parabolics. (This also follows from the construction
of the relative Rips complex in [8].)

THEOREM 2.46 ([35, Theorem 1.5]): Let G be a finitely generated group,
{H1,...,Hy,} a collection of subgroups of G. The following are equivalent:

(1) G is finitely presented with respect to {Hy,...,Hy,,} and the corre-
sponding relative Dehn function is linear;
(2) G is hyperbolic relative to {Hy, ..., Hpy}.

Recall by Lemma 2.14 that if G is finitely generated, and finitely presented
relative to {Hy, ..., Hy,}, then each of the H; is finitely generated.

In this paper, we have no need for the ‘relative’ Dehn functions of [35]. Rather,
we construct simply-connected 2-complexes with linear combinatorial isoperi-
metric inequalities. (They also have linear homological isoperimetric inequali-
ties; see Theorem 3.25 below.)

Definition 2.47 (Coned-off Cayley complex): Suppose that G is a finitely gen-
erated group, with a collection P of finitely generated subgroups, and that
(A, P | R) is a finite relative presentation for G.

Let S be a (finite) compatible generating set for G containing A. Form a
2-complex C’(G, P,S,R), called the coned-off Cayley complex as follows:

Let C = C(G, P, S) be the coned-off Cayley graph (which contains a copy of
the Cayley graph I'(G,S). Attach 2-cells to C' in a G-equivariant way, corre-
sponding to the relations R. Also, add a 2-cell to each loop of length three in
C which contains an infinite valence vertex.
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LEMMA 2.48: The coned-off Cayley complex is simply-connected.

PROPOSITION 2.49: Suppose that G is hyperbolic relative to P, and let S be
a finite generating set for G containing generating sets for each subgroup in P.
Also, let (S,P | R) be a finite relative presentation for G.

Form the coned-off Cayley complex CA’(G7 P,S,R). Then CA’(G7 P,S,R) has a

linear combinatorial isoperimetric inequality.

Proof. Since G is hyperbolic relative to P, the coned-off Cayley graph is -

hyperbolic and fine. Therefore, there are only finitely many orbits of simple

loops of length at most 164. Since C'(G,P, S,R) is simply-connected, this im-

plies that there exists K so that every combinatorial loop of length at most 16

can be filled with a combinatorial disk in C(G, P,S,R) of area at most K.
The result now follows immediately from Proposition 2.22. |

We now prove the converse to Proposition 2.49.

PROPOSITION 2.50: Suppose that GG is finite presented relative to
P=A{P,...,P.}

and that (S,P | R) is a finite relative presentation for G.

If the coned-off Cayley complex c=C (G, P, S, R) satisfies a linear combina-
torial isoperimetric inequality then the coned-off Cayley graph I = f‘(G, P, S)
is Gromov hyperbolic and fine.

Proof. That I is d-hyperbolic for some 4 follows from Proposition 2.23, since
there is certainly a bound on the length of the attaching maps of 2-cells in C.

It remains to prove that I'is fine. Take an edge e and a simple simplicial loop
¢ containing e of length L. Now, there are only finitely many 2-cells adjacent
to each edge in C. A simple loop may be filled by a topological disk, and the
isoperimetric function supplies a bound on the area of such a disk in terms of
the length. In particular, suppose a simple loop of length at most L can be
filled by a topological disk of area at most L’. There are only finitely many
topological disks of area at most L’ containing e on the boundary, so there are
only finitely many simple loops of length at most L containing e. Therefore I
is fine. |
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It is a consequence of Theorem 3.25 that the hypothesis in Proposition 2.50
can be weakened to that of having a homological linear isoperimetric inequal-
ity, but we do not know a direct proof. This raises a natural question (if the
answer is positive, then it can be used to give a direct proof):

QUESTION 2.51: Let X be a simply connected 2-complex with a homological
(linear?) isoperimetric inequality, a bound on the length of attaching maps of
2-cells and finitely many 2-cells adjacent to any edge. Must X be fine?

Part 1. The cusped space and preferred paths
3. The cusped space

The purpose of this section is to construct a space X from a finitely generated
group G, and a finite collection P of finitely generated subgroups. The utility
of X is that it is Gromov hyperbolic if and only if G is hyperbolic relative to P
(see Theorem 3.25).

3.1. COMBINATORIAL HOROBALLS.

Definition 3.1: Let I be any 1-complex. The combinatorial horoball based
on I', denoted H(T'), is the 2-complex formed as follows:

e HO =T© x ({0} UN)
e HW contains the following three types of edges. The first two types are
called horizontal, and the last type is called vertical.
(1) If e is an edge of I" joining v to w, then there is a corresponding
edge € connecting (v,0) to (w,0).
(2) f k> 0 and 0 < dr(v,w) < 2%, then there is a single edge con-
necting (v, k) to (w, k).
(3) If k>0 and v € T there is an edge joining (v, k) to (v, k + 1).
o H® contains three kinds of 2-cells:
(1) vy C HW is a circuit composed of three horizontal edges, then
there is a 2-cell (a horizontal triangle) attached along .
(2) If vy C HM is a circuit composed of two horizontal edges and two
vertical edges, then there is a 2-cell (a vertical square) attached
along ~.
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(3) If v ¢ H™W is a circuit composed of three horizontal edges and two
vertical ones, then there is a 2-cell (a vertical pentagon) attached
along v, unless v is the boundary of the union of a vertical square
and a horizontal triangle.

Remark 3.2: As the full subgraph of H(I") containing the vertices T®) x {0} is
isomorphic to ', we may think of I as a subset of H(T).

Remark 3.3: Whenever H(T') is to be thought of as a metric space, we will
always implicitly ignore the 2-cells, and regard H(F)(l) as a metric graph with
all edges of length one.

Definition 3.4: Let I" be a graph and H(T") the associated combinatorial horoball.
Define a depth function

D :H(T) — [0,00)
which satisfies:
(1) D(z)=0ifz €T,

(2) D(x) =k if x is a vertex (v, k), and
(3) D restricts to an affine function on each 1-cell and on each 2-cell.

Definition 3.5: Let T' be a graph and H = H(I') the associated combinato-
rial horoball. For N > 1, let Hy C H be the full sub-graph with vertex set
r® x{o,...,N}.

The following observation will be important in Section 10.

Observation 3.6: Let I' be a graph, Hy as in Definition 3.5 above, and 0Hy be
the full sub-graph with vertex set I'®) x {N}.

Let H' = H(OH ). Identify the copies of 9H y in Hy and H'. The resulting
complex is isomorphic to H.

ProOPOSITION 3.7: Let I' be a connected 1-complex so that no edge joins a ver-
tex to itself. Then H(T') is simply-connected and satisfies a linear combinatorial
isoperimetric inequality with constant at most 3.

Proof. Let ¢ be a combinatorial loop in H(I'). To prove the proposition it
suffices to show that ¢ can be filled by a disk of area at most 3|c|;.

Let j be minimal so that there is some vertex (v, j) in ¢. Since we may clearly
suppose ¢ has no backtracking, there is at least one horizontal edge at depth j
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in c¢. By gluing pentagons to edges in ¢ at depth j, and squares when pentagons
are not possible, we can reduce the length of ¢, and increase the minimal depth.
Repeating this procedure, we eventually end up with a path of length 3, or 4,
which is entirely horizontal. A path of length 3 can be filled be a horizontal
triangle, whilst a path of length 4 can be filled by two pentagons beneath it.
Being slightly careful about counting shows that the isoperimetric constant is
at most 3, as required. |

THEOREM 3.8: Let I' be any 1-complex. Then H(I')") is 6-hyperbolic, where
¢ is independent of T'.

Proof. This follows from Propositions 3.7 and 2.23. |

Remark 3.9: By studying the geometry of geodesics in combinatorial horoballs
as in the results below, it is possible to directly prove that any combinatorial
horoball is 20-hyperbolic (and 20 is not optimal).

Geodesics in combinatorial horoballs are particularly easy to understand.

LEMMA 3.10: Let H(I') be a combinatorial horoball. Suppose that x,y € H(T)
are distinct vertices. Then there is a geodesic vy(x,y) = v(y, ) between x and y
which consists of at most two vertical segments and a single horizontal segment
of length at most 3.

Moreover, any other geodesic between x and y is Hausdorff distance at most
4 from this geodesic.

Proof. Let 7' be any geodesic joining x to v.

We observe that if h = [y(¢1),7/(t2)] is a maximal horizontal segment of
length greater than 1, then D(v'(¢t; — 1)) and D(9/(t2 + 1)) are both smaller
than D(h) (see Figure 2). It is easy to see that no geodesic in A can contain a
horizontal segment of length longer than 5 (Figure 3). Indeed, the geodesic '
can contain at most 5 horizontal edges in total.

We next observe that there can be at most two horizontal segments in ~/
other than the one at maximal depth, at most one on each side of the deepest
one. In fact, there can be at most one horizontal segment other than the one
at maximal depth. Figure 4 shows representative paths with three horizontal
segments together with ways to shorten them (there are other possibilities,
which are easy to deal with).
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Figure 2. In a geodesic, a horizontal segment not at maximal

depth must have length 1.

Figure 3. A geodesic can contain no horizontal segment of
length greater than 5.

Let M’ be the maximum depth achieved by «’. There is a geodesic " ob-
tained from 4’ by pushing all horizontal segments of v’ down to D~1(M’). The
Hausdorff distance between 7' and 7 is at most 11. The geodesic 7" consists
of at most two vertical segments and one horizontal segment of length at most
5. If the horizontal segment h C 4" has length 4 (respectively 5) then there is
another path with the same endpoints as h, and the same length, consisting of
two vertical edges and a horizontal path of length 2 (respectively 3). Replacing
h with this new path if necessary, we obtain a geodesic of the form required by
the lemma.

Now let v be any geodesic satisfying the conclusion of the lemma. We argue
that the Hausdorff distance between v and " is at most 2% which, combined
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Figure 4. A path with three horizontal segments and a way to
shorten the path.

with the earlier estimate on the Hausdorff distance between 7' and «”, completes
the proof.

Let M be the maximum depth of 7. The reader may readily verify that
0<M-—-M <1. If M = M’, then ~" lies within Hausdorff distance at most
11 of 4. If M = M’ + 1, then the Hausdorff distance between v(z,y) and 7" is
at most 2%. |

LEMMA 3.11: If A is a combinatorial horoball, then the Gromov boundary
consists of a single point, denoted e4. Moreover, for any x € A, there is a
geodesic ray from x to e 4 consisting entirely of vertical edges. Any geodesic ray
from x to ep is Hausdorff distance at most 1% from the vertical ray.

Proof. A geodesic ray has at most one horizontal edge. Given this observation,
the proof is similar to that of Lemma 3.10. |

3.2. THE AUGMENTATION. Let G be a finitely generated group, with a finite
collection P of subgroups. Let S be a compatible generating set for G. We define
an augmentation of the relative Cayley graph complex of G by combinatorial
horoballs. This augmentation will be hyperbolic exactly when G is hyperbolic
relative to P (see Theorem 3.25).

Definition 3.12: Let G be a finitely generated group, let P = {P;,...,P,} be a
(finite) family of finitely generated subgroups of G, and let S be a generating set
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for G so that P;NS generates P; for each i € {1,...,n}. Foreachi € {1,...,n},
let T; be a left transversal for P; (i.e., a collection of representatives for left cosets
of P; in G which contains exactly one element of each left coset).

For each 7, and each t € T;, let I'; ; be the full subgraph of the Cayley graph
I'(G, S) which contains tP;. Each I'; ; is isomorphic to the Cayley graph of P;
with respect to the generators P; N S. Then we define

X =1(G,8)UU{H[;)P:1<i<nteT}),

where the graphs I';; C I'(G, S) and T'; ; C H(T';+) are identified as suggested
in Remark 3.2.

Remark 3.13: The vertex set of X can naturally be identified with the set of
4-tuples (i,t,p, k), where i € {1,...,n},t€T;, p € P;, and k € N.
We will use this identification without comment in the sequel.

Remark 3.14: The group G acts isometrically and properly on the graph
X(G,P,S).

A path in X starting at 1 determines an element of G in the following manner:
Each horizontal edge is naturally labelled by a group element. Take the product
of the labels of the horizontal edges in the path (and ignore the vertical edges)
with the order coming from the path.

Paths in quotients X/H, where H < G, and also paths which start at a point
(i,1,1, k) lying directly ‘beneath’ 1 also naturally determine elements of G.

Supposing further that G is finitely presented relative to P, there is a natural
locally finite simply connected 2-complex with skeleton X (G, P, S):

Definition 3.15: Let G be a finitely generated group, let P = {Py,...,P,} be a
(finite) family of finitely generated subgroups of G, and let S be a generating
set for G so that P; N S generates P; for each ¢ € {1,...,n}. Let S’ =S\ UP,
and suppose that

G=(API|R)

is a finite relative presentation of G, in the sense of Definition 2.13 above (where
A C S). Then we may form a locally finite 2-complex X (G, P, S, R), whose
one-skeleton is the space X (G, P, S) from Definition 3.12, and which contains
the following 2-cells.
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e 2-cells from R: Each relator in R determines a loop v in I'(G, S) be-
ginning at 1. For each g € G, there is a 2-cell attached along g~.

e 2-cells from combinatorial horobaHS' For each 7 and each t € T; we have
an embedding of H(T; ;)M into X(G,P,S). If v € H(T;;) bounds a
2-cell, then there is a 2—ce11 attached along its image in X(G, P, S, R).

Remark 3.16: The 2-complex X can also be obtained from the relative Cayley
complex C(G,S,R) as in Definition 2.16 by attaching combinatorial horoballs
to the cosets gP; (including the 2-cells in the horoballs). In particular, and
this will be important several times throughout this paper, the relative Cayley
complex is canonically embedded in X.

As in Definition 3.4, we define a depth function for the space X(G,P,S,R):

Definition 3.17: A depth function is
D:X(G,P,S,R) — [0,00)

and it satisfies:
(1) D(z)=0if z € G;
(2) D(x) =nif z is a vertex (i,t,p,n);
(3) D is equivariant; and
(

4) D restricts to an affine function on each 1-cell and on each 2-cell.

NN NN

Remark 3.18: Because D is G-equivariant, it induces a depth function on the
quotient space X/H, for any subgroup H of G. We refer to the depth function
on the quotient by D also.

Remark 3.19: We observe that D~1(0) = 6’, the relative Cayley complex of G.

Remark 3.20: In Section 6, we need to choose R carefully. We will need all
sufficiently short loops in C to be able to be filled in C. This can be ensured
by including all of the short relations in G in R.

We remark that X naturally breaks up into C and an equivariant family of
combinatorial horoballs.

Definition 3.21: Let L > 0. An L-horoball is a component of D~![L,00). A
0-horoball is the maximal subcomplex of X (G, P, S, R) with vertices

tP,U{(i,t,p,k): p € P,k € N}
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for some i € {1,...,n} and some ¢ € T;.

Remark 3.22: The space X is given the path metric, where each edge has length
1. We have not specified what kind of metric to put on the 2-cells. Thus,
whenever we are discussing the metric of X, we will simply pretend that X is a
1-complex. In particular, a geodesic in X will always refer to a geodesic path
in the 1-skeleton.

The purpose of the 2-cells is that we want a simply-connected space for which
we will prove a linear isoperimetric inequality. This will imply that X is a -
hyperbolic space for some 6, in case G is hyperbolic relative to P. See Theorem
3.25 below.

3.3. NOTIONS OF RELATIVE HYPERBOLICITY. The main result of this subsec-
tion is Theorem 3.25, which gives a collection of statements which are equivalent
to relative hyperbolicity. In particular, G is hyperbolic relative to P if and only
if X(G,P,S) is Gromov hyperbolic for any appropriate choice of S as in Defi-
nition 3.12 above.

The next result will allow us to translate the hyperbolicity of the coned-off
Cayley complex into hyperbolicity of the space X. In order to make the proof
of Theorem 3.25 easier, we choose to phrase it in terms of linear homological
isoperimetric inequalities, though there is an analogous version with combina-
torial isoperimetric inequalities (and the proof of this analogue is somewhat
easier).

THEOREM 3.23: Suppose that G is finitely presented relative to P, that S is a
finite generating set for G so that P = (S N P) for each P € P, and suppose
that (S,P | R) is a finite relative presentation for G.

If the coned-off Cayley complex O(G,P,S, R) satisfies a linear homologi-
cal isoperimetric inequality, then X (G,P,S,R) satisfies a linear homological
isoperimetric inequality:.

Proof. Let T' = T'(G,S) be the Cayley graph of G with respect to S. Let
I' = I(G,P,S) be the coned-off Cayley graph and C' = C(G,P,S,R) the
coned-off Cayley complex.

By assumption, C satisfies a linear homological isoperimetric inequality. Let
K be the isoperimetric constant for C.

Take a 1-cycle ¢ in X'. By Theorem 2.26, we may assume without loss of
generality that c is a simple loop. If the support of ¢ lies entirely within a single
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horoball, then ¢ may be filled with a combinatorial disk of area at most 3|c|1,
by Proposition 3.7. Therefore, we may suppose that the support of ¢ does not
lie entirely in a horoball.

Decompose c¢ into pieces which lie in I', and pieces which lie entirely in a
single horoball.

For each maximal sub-path of ¢ which lies in a horoball, there is a path of
length 2 in I with the same endpoints. This gives a loop ¢in I'. Clearly |¢| < |¢].

There is a rational 2-chain w in C' with boundary ¢ so that
lwli < Kléfs.

Consider an infinite-valence vertex v € 4, and the 2-cells in supp(w) which
intersect v. Each such 2-cell is a triangle, and has a single edge in I'. Thus to
each infinite valence vertex v in ¢ is associated (via the 2-chain w) a 1-chain
Py whose support is contained in the link of v and whose 1-norm is exactly the
1-norm of w restricted to the star of v.

The 1-chains p, (of which there are finitely many for the given path ¢) have
total length bounded by |w|;, and give a method of ‘surgering’ ¢. We have the
decomposition of ¢ into paths ¢; in the Cayley graph and paths r,, where r, is
a path through a horoball corresponding to the infinite valence vertex v. This
induces a decomposition of ¢ as

o= Ylrtp)+ (Zq—zp)

where the paths are oriented so that r,+p, is a 1-cycle, and sois (3, ¢i—>_, Pv)-
Now,

el < e+ ool + D laih + Y Ipoly < 2K(él + el < (2K + 1))y

(The second inequality holds because ), [py|1 < |wli, and Y-, |ro[1 4+, (@il =
el

The 1-cycles r, + p, lie entirely in a horoball, and can be filled efficiently, as
described above (this follows from Theorem 2.26 and Proposition 3.7).

Therefore, it suffices to fill the 1-cycle ¢1 = (37, ¢; — >, pv) efficiently. The
1-cycle ¢; has support entirely in the Cayley graph I'. Therefore, ¢; can be
interpreted as a 1-cycle in I". Hence there is a 2-chain w1 in I" so that owi =1
and w11 < Kleph.
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Let w/ be the 2-chain which is equal to w; on the Cayley complex, and equal to
zero on 2-cells adjacent to infinite valence vertices. Then dw] decomposes into
a sum of ¢, and a collection of 1-cycles d; each of which lies entirely on the link
of an infinite valence vertex. Also, |wi|1 < |wil1, so |0wi]1 < M|wi|1 < M|wi]1,
where M is the maximum length of an attaching map of a 2-cell in I.

Since the support of wj is entirely contained in the Cayley complex, it can
be considered as a 2-chain in X, whose boundary is the sum of ¢; and a col-
lection of 1-cycles, d; each of which lives entirely in a single parabolic coset.
Each d; can be filled by a 2-chain v; whose support is entirely contained in the
appropriate combinatorial horoball, so that |v;]1 < 3|d;|;. We also have that
> ldili < |0wi|1, by choosing the d; to have distinct supports (choose one d;
for each parabolic coset).

Now, by choosing appropriate orientations, we have d(wj + >, v;) = ¢1. We
also have

|w} —i—ZVih < |wih +Z il < w1y +3Z |dily < Kleily + 3|0wi |1

3 K2

S K|Cl|1 +M|w1|1 < (KM+K)|01|1

This finishes the proof that X satisfies a linear homological isoperimetric in-
equality. ]

We state the combinatorial version of Theorem 3.23 below for completeness.
The proof is entirely analogous to that of Theorem 3.23 with loops playing the
part of 1-cycles and disks the part of filling 2-chains.

THEOREM 3.24: Let G,P,S and R be as in the statement of Theorem 3.23
above.

IfC (G,P,S,R) satisties a linear combinatorial isoperimetric inequality with
constant K, then X(G,P,S,R) satisfies a linear combinatorial isoperimetric
inequality, and we can take the constant to be K1 = 3K (2K + 1).

The following is the main result of this section, and gathers together a few
notions of relative hyperbolicity, including some that are new in this paper.

THEOREM 3.25: Suppose that G is a finitely generated group, P = {Py,..., Py}
is a finite collection of finitely generated subgroups of G, G = (A,P | R) is a
finite relative presentation for G, and S is a compatible generating set containing

A.



350 D. GROVES AND J. F. MANNING Isr. J. Math.

Let T' be the coned-off Cayley graph for T’ with respect to S and P, and let C
be the coned-off Cayley complex. Let X (G,P,S,R) be as defined in Definition
3.15 above. The following are equivalent:

1) G is hyperbolic relative to P in the sense of Gromov;
2) G is hyperbolic relative to P (i.e., I' is Gromov hyperbolic and fine);
3) C satisfies a linear combinatorial isoperimetric inequality;

5) XM is Gromov hyperbolic;
6
7

X satisfies a linear combinatorial isoperimetric inequality;

(

(2)

(3) €

(4) C satisfies a linear homological isoperimetric inequality;
(5)

(6)

(7) X satisfies a linear homological isoperimetric inequality.

The main result of [6] is that (1) implies (2) (cf. Remark 2.44). By Proposition
2.49, (2) implies (3).

By Lemma 2.29, (3) implies (4) and (6) implies (7).

By Theorem 3.23, (4) implies (7).

Now, (7) implies (5), by Theorem 2.30.

Proposition 2.22 gives that (5) implies (6), provided we can find a bound
on the area of fillings of short loops in X (where “short” means at most 166).
Any combinatorial loop in X of length at most 16§ which lies in a horoball can
be filled by a combinatorial disk of length 489, by Proposition 3.7. Up to the
G-action, there are only finitely many loops of length less than 166 which do
not lie in a horoball. Since X is simply connected, these can all be filled, and
so there is some universal constant C'(X) so that any loop in X of length less
than 164 can be filled by a disk of area at most C'(X).

It remains to observe that the space X satisfies the conditions of Definition
2.38, and so (5) implies (1).

Gathering together these implications, the theorem is proved. |

3.4. METRIC PROPERTIES OF X. We now suppose that G is hyperbolic relative
to P, and that X = X(G,P,S) as in Definition 3.12 (for the moment we are
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only concerned with the metric properties of X, and we restrict our attention
to the 1-complex version of X).

By Theorem 3.25, the graph X is d-hyperbolic for some §. We assume that
this § satisfies the conditions of Remark 2.10

LEMMA 3.26: If L > 6§, the L-horoballs are convex in X.

Proof. Let Hy be a 1-horoball, and let H;, be the L-horoball contained in H;.
We observe that Hy, is convex in Hy (where H; is endowed with its path metric).
Thus if Hy, fails to be convex in X, then two points in H; are connected by a
geodesic which passes through D=1(0). Let p and ¢ be two such points in Hy,
chosen to have minimal distance from one another in the path metric on H;.
(Note that this distance must be at least 2L so that the geodesic between them
actually leaves H;. They must also satisfy D(p) = D(q) = L.) Choose another
point r € Hy, so that max{dm, (p,r),dm,(¢,7)} < dm,(p,q) and D(r) = L.
There are then X-geodesics [p,r] and [g,r] which lie entirely in Hy, whereas
p and ¢ are joined by a geodesic which includes points in D~1(0), i.e., points
which are of distance at least L from Hp. Since the triangle formed by these
geodesics is d-slim, this implies that L < §, a contradiction. |

We extend the choice of geodesics in Lemma 3.10 to a choice of geodesics
between any two points in X.

LEMMA 3.27: If G is torsion-free, then there is an antisymmetric, G-equivariant
geodesic bicombing v on X, so that if x and y lie in the same L-horoball for
L > 26, then v(z,y) is as described in Lemma 3.10.

Proof. Choose a complete set {0;} of representatives for the orbits of vertices of
X under the G-action. For each o; and each x € X, choose a geodesic v(0;, x)
as in Lemma 3.10. Extend equivariantly and antisymmetrically. Because G is
torsion free, there is no element of G which exchanges two points of X. Thus
equivariance and antisymmetry may coexist. ]

Remark 3.28: We say the bicombing in Lemma 3.27 is ‘antisymmetric’ because
we consider paths to be maps. If paths are considered as subsets, it would be
symmetric. We will sometimes blur this distinction, but it will not introduce
any confusion. For more about the parametrizations of the bicombing, see
Paragraph 5.1.1.
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When we define the homological bicombing in Section 6, it will be antisym-
metric, of course.

Remark (about torsion) 3.29: If G is not torsion-free, then there may be no
bicombing as in Lemma 3.27, because of the possible presence of 2-torsion. The
way to proceed in the presence of torsion is to let v(x,y) be the collection of all
of the geodesics between x and y. This makes a number of the arguments later
in this paper more awkward. At times it is also useful to consider the “average”
of all of the geodesics between x and y.

The following is a slight generalization of the usual notion of cone types.

Definition 3.30 (Cone types): Suppose that G is a group, that = is a graph
equipped with a free G-action and that x € = is a vertex.

For a combinatorial path v: T — =, let [y] denote the G-orbit of . If v is a
vertex in Z, the cone type of v viewed from =z is the collection of classes [v]
of paths for which

(1) there exists g € G so that g - v(0) = v; and
(2) d(z,9-~7(1)) = d(z,v) + |-

Note that if v; and vo have the same cone type then, in particular, v; and vy
lie in the same G-orbit.

In case = is the Cayley graph of a finitely generated group G, and x = 1,
the above definition is equivalent to the usual notion of cone types (see [5,
II1.T".2.16], for example).

The following result follows directly from the proof of [5, Theorem II1.T".2.18].

LEMMA 3.31: Let G be a finitely generated group acting freely on the locally
compact 6-hyperbolic graph =, and suppose that x € = is a vertex. Each orbit
of vertices in 2 contains only finitely many cone types viewed from .

LEMMA 3.32: Suppose that G is hyperbolic relative to P = { Py, ..., P,}, where
no P; is equal to G. Suppose further that S is a compatible generating set for G
with respect to P, and that X = X (G, P, S) is §-hyperbolic. Finally, suppose
that diam(T'(P;, S N P;)) > 21+ for each i.

For each L > 0 there exists a 10d-local geodesic v C X of length at least L
so that v does not intersect any (155 + 1)-horoball in X.
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Proof. Proceed as follows. Let H; and Hs be distinct 105-horoballs in X. Let
v be a shortest path between H; and Hy. Note that the length of v is at least
209.

Let x = v N Hy. For some i, some t € T; and some p € P;, we have z =
(i,t,p,100). By hypothesis, there exists ¢ € P; so that the distance in T'(P;, SN
P;) between p and ¢ is exactly 2'°9+1. This implies that the geodesic y(z,y)
between z and y = (i, t, ¢, 105) intersects D~1(154) but not D=1 (156 +1). This
geodesic consists of two vertical segments, and a single horizontal segment of
length 2.

Let v/ = gp~' - v. Our 106-local geodesic segment is then constructed as
follows: Start with v, followed by 7(z,y). Then take v/ to the 104-horoball
Hz = gp~'Hs. From the endpoint 2’ of v/ in Hj, construct a a path ~v(z',y")
exactly as above (see Figure 5). Continue in this manner. This construction can

Figure 5. How to make an arbitrarily long 10é-local geodesic
which stays in the “thick” part of X.

be iterated as many times as necessary to ensure the path has at least length L,
and it is not difficult to see that the ensuing path is a 106-local geodesic (note
that the path v, and its translates, must begin and end with a vertical path of
length 100, since it is a shortest path between horoballs). |

THEOREM 3.33: Suppose that G is hyperbolic relative to P = {Py,..., P,},
where no P; is equal to G. Suppose further that S is a compatible generating
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set for G with respect to P, and that X = X (G, P, S) is 6-hyperbolic. Finally,
suppose that diam(T'\(P;, S N P;)) > 2% for each 1.

Then there exists a hyperbolic element g € G which has an axis v € X so
that v C D710, 196].

Proof. Let Kjgs be the total number of cone types of all points in D~1[0, 194]
as viewed from 1 € X.

Let 0 be a 106-local geodesic of length longer than %(Klgg) + 26 as in Lemma
3.32. In particular, o does not penetrate any (156 4+ 1)-horoball. By translating
o by an element of G, we suppose that ¢ begins at 1 € X.

By [5, Theorem ITI.H.1.13(1)], any 10d-local geodesic is contained in the 26-
neighborhood of any geodesic joining the endpoints. A simple argument then
shows that in fact the geodesic is contained in the 44-neighborhood of the k-
local geodesic. Also, any 105-local geodesic is a (%,2d)-quasi-geodesic (by [5,
Theorem IIT1.H.1.13(3)]).

Let p be a geodesic segment joining the endpoints of 0. We have ensured that
the length of p is greater than K195, that p does not intersect any (195 + 1)-
horoball, and that p starts at 1. 3

Therefore, there exist vertices v1,vy € p which have the same cone type as
viewed from 1. Suppose that v; occurs before v on p. Let p; be the subpath
of p from the 1 to vy, let po be that part between v, and vy, and let ps be the
remainder of p.

Since v; and vo have the same cone type, they are in the same G-orbit. Let
g € G be so that g.v; = vs. Since pp2p3 is a geodesic, and v; and vy have the
same cone type as viewed from 1, the path p;p2(g-p2)(g- p3) is also a geodesic.

In turn, this implies that pip2(g - p2)(g° - p2)(g? - p3) is a geodesic.

Iterating this argument, we see that the path

p2(g - p2) (g p2) -+,

is a geodesic ray, starting at v;. Denote this ray by r. Note that »r C g~ - r.
Let + be the union of the paths g~% - r as i — oo, parametrized in the obvious
way. This is a bi-infinite geodesic line, contained in D~1[0,196], upon which g

acts by translation. |

3 The following argument is very similar to that of [5, Proposition II1.I".2.22].
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THEOREM 3.34: Suppose that G is hyperbolic relative to P = {Py,...,P,},
that G # P; for each i and that P is infinite. Then G is non-elementary
relatively hyperbolic.

Proof. Suppose first that some parabolics are finite. Let X’ be the space ob-
tained from Definition 3.12 using all of the parabolics, and X the space obtained
using only the infinite parabolics. Up to quasi-isometry, X’ is X with a locally
finite collection of rays attached to the cosets of the finite parabolics. In partic-
ular, X is Gromov hyperbolic if and only if X’ is. Moreover, an element g € G
acts hyperbolically on X’ if and only if it acts hyperbolically on X.

Therefore, we are free to assume that all of the parabolic subgroups of G are
infinite.

Let v be the geodesic from Theorem 3.33, which is an axis of a hyperbolic
element g € G. Let v and v~ be the points in X at either end of ~.

Let H be a 256-horoball in X, and let ey be the point in 0X coming from H.
Consider an ideal geodesic triangle, T', with vertices v~,vT and ey, and edge
~ between v~ and yT. Suppose furthermore, that the geodesics with endpoint
ey are vertical after depth 2. By Lemma 2.11, this triangle is 3§-slim.

The triangle T intersects H N D~1(254) in a pair of points {z*, 2~} which
are at most 30 apart. Since the parabolic P which stabilizes H is infinite, there
exists p € P so that dx({p -2~ ,p-2T},{z~,2T}) > 104.

Now, pT is another ideal triangle, with one vertex ey and the opposite side
an axis for pgp~!. We claim that Fixpx (g) N Fixpx (pgp~t) = 0.

An easy argument shows that the Hausdorff distance between two geodesics
with the same endpoints at infinity is at most 24.

Suppose, for instance, that p- T = 4~. Then the fact that the geodesics
from p-+T to ey and from ¥~ to ey are vertical below the 26 level of H, easily
implies that dx (p-z™,27) < 44, in contradiction to the choice of p.

1

Thus, the elements g and pgp~" are hyperbolic elements with disjoint fixed

sets in 0X, and G is non-elementary relatively hyperbolic, as required. ]

3.5. CONSTANTS. By virtue of Theorem 3.25, we may assume that X (G, P, S)
is d-hyperbolic for some J; we are free to assume that ¢ is an integer and that
6 > 100. It is useful to have a few different scales to work at, and so we choose
the following constants. The choices made will be justified by the results of the
subsequent sections.
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Definition 3.35: We set K = 100, Ly = 100K, and Ly = 3L;.

We have made no attempt to make this choice of constants optimal.

4. Convex sets and betweenness

In this section we prove a theorem about collections of convex sets in an ar-
bitrary proper Gromov hyperbolic space. The construction in this section is
crucial to the construction of preferred paths in the next section. In turn,
preferred paths are the key to our construction of the bicombing in Section 6.

Definition 4.1: Let Y be a geodesic metric space. A collection G of convex sets
is N-separated if for all A, B € G the distance between A and B is at least V.
The elements of G will be called globules.
Let Isom(Y; G) be the collection of all isometries g of Y so that for all A € G
we have gA € G.

Throughout the remainder of this section, we will suppose that G is a 506-
separated collection of convex subsets of a d-hyperbolic space T.

Remark 4.2: In subsequent sections of this paper, we will apply the results of
this section in case T = X (G, P, S, R) and G is the collection of all Li-horoballs
in X.

Another interesting example is H" with some collection of (sufficiently sep-
arated) horoballs. It is worth remarking that the existence of a function D>
satisfying the properties (A1)—(A7) below is not obvious even in the case of
horoballs in H".

The main purpose of this section is to define, for any pair of points a,b € T,
a family of globules Dg,, which will be the collection of globules which are
‘between’ a and b (in case a is contained in a globule A we will have A € D55
for all b). We want our collections D5, to satisfy various conditions, listed as
Axioms (A1)-(A7) below. Most of these are quite straightforward to ensure but
Axioms (A5)—(AT), the most important for the applications, are much more
difficult to guarantee.

Remark 4.3: The construction performed in this section can be done if the
globules are only quasi-convex. How far the globules must be separated depends
on the constants of quasi-convexity.
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The following two lemmas will be useful:

LEMMA 4.4: If C is a convex subset of Y then for any R > 0, the set Ng(C') is

d-quasi-convex.

LEMMA 4.5: Let A, B be disjoint closed d-quasi-convex sets in the proper 0-
hyperbolic space Y. Let a, a’ € A, and b, b’ € B. If q is a geodesic between a
and b, and q' a geodesic between a’ and V', then ¢’ lies in the 35-neighborhood
of AUBUg.

Moreover, for any 46 < R < 1d(A, B), the Hausdorfl distance between the
(nonempty) sets ¢ ~ Nr(AU B) and ¢’ ~ Nr(A U B) is at most 56.

Proof. Let [a, a’] be any geodesic between a and a’, and let [b, V'] be any geodesic
between b and ¥'; since A and B are §-quasi-convex, [a,a’] C N5(A) and [b, '] C
Ns(B). Consider the quadrilateral [a,a’] U g U [b,b'] U [b, a'], pictured in Figure
6. Since T is d-hyperbolic, this quadrilateral is 20-slim. In particular, if z is

Figure 6. Tube lemma.

any point on ¢’, then
x € Nas (Ja,a’ ] UqU[b,b]) C N3s(AUqU B).

For the second assertion of the lemma, let R be as in the statement; since
R < 1d(A, B), the set ¢ \ Nr(A U B) is non-empty. Let z € ¢ \ Ng(AU B).
We must show that

d(z,q ~ Nr(AU B)) <56.

As above, there is a point 2’ € [a,a’] U ¢ U [b,b] so that d(z,2’) < 2. Since
R > 36, and z is at least R from A U B, the point ' must be on ¢'. If 2’ is
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outside the R-neighborhood of A U B, then we are done, so suppose without
loss of generality that z’ lies in Ng(A).

Let y be the point on ¢’ which is distance exactly R from A. Let ¢ be a point in
A with d(y,t) = d(y, A) = R. Consider the geodesic triangle pictured in Figure
7 with vertices s, t, and y. This triangle is §-thin and the geodesic between s and

Figure 7. Tube lemma.

t is contained in Ns(A). Since d(x, A) > R, we have d(2', A) > R — 26 > 24, so
2’ cannot be as close as § to the geodesic between s and t; thus there is a point
z on the geodesic between y and ¢ so that d(2’,z) < ¢ and d(z,y) = d(z,y).
We have

d(z,A) > d(z',A) —§ > R — 34,
and so d(z,y) < 30; this implies d(z’,y) = d(z,y) < 36. Finally, d(z,y) <
d(z,z") + d(z',y) < 50, and the lemma is proved. "

Remark 4.6: The assumptions of Lemma 4.5 can be weakened. At the cost of
a slightly more complicated proof, the assumptions of ‘closed’ and "proper’ can
be removed.

However we will only ever use Lemma 4.5 exactly as it is stated.

Definition 4.7: For a,b € Y, let a(a, b) be the set of all geodesics between a and
b.
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Definition 4.8: Suppose that a,b € Y. Let C°(a,b) denote the set of globules
which intersect some element of a(a,b) nontrivially.
For any R let Cf(a,b) denote the set of globules P so that for every v € a(a, b)

NR(P) ﬂ’)/# @

Since bigons are d-thin, C%(a,b) C C¥(a,b) for all a,b € Y. (Recall K = 104.)

Remark 4.9: For a geodesic v in T, the set of globules P € G so that
Nog (P) N~y # B inherits a natural order by projection to the geodesic. This
is because globules lie at least 506 = 5K apart from each other. This induces
an order on C*%(a,b) for each a,b € T and each v € a(a,b); this order is
independent of ~.

Note that if C2%(a,b) intersects C*% (c, d) nontrivially, then the order on the
intersection inherited from C2X (¢, d) will either coincide with the order inherited
from C2X(a, b) or with its reverse.

For any a,b € Y, there are only finitely many elements of CX(a,b): the size
is bounded by +d(a,b) + 1.

Let Og be the set of totally ordered finite subsets of G

Thus we have functions

C’: T x Y — Og,

and
CK:TxT— 0g.

Note that the action of Isom(Y;G) on G induces an action on Og and that C°
and CK are equivariant with respect to this action. (Note also that the same
subset appears many times in Og, once for each possible total order on the
subset. By Remark 4.9, only two of these orders actually appear in the image
of C° or CK)

For a function

C: TxYT— Og,

we will denote C(a,b) by Cqp. In the properties (A1)—(A6) defined below, the
symbol “C” is used to denote “ordered subset”, not just “subset”.
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We will use the following notation for subintervals: Let a,b € Y. If A and B
are contained in C,p then

Cop[A,Bl={Y €Cop: A<Y < B},
Capla, A]={Y €Cop:Y < A}, and
Cap[A, D) ={Y €Cup: A<Y}.

Here are some useful conditions C might satisfy:

(A1) For all a,b € Y, Cgb C Cap;

(A2) For all a,be T, Cop C Cfb;

(A3) For all a,b € T, Cop = (Cp,a)%;

(A4) C is Isom(Y; G)-equivariant.

(A5) If A, B € C »NC,q for some a,b,c,d € T and A, B € G thenC, 3[A, B] =
CealA, BJ;

(A6) If A € Cyp NCqy,c for some a,b,c € T and A € G then Cqp(a, A] =
Ca,c(avA]'

(A7) If A € Cop NCep for some a,b,c € T and A € G then Cyy[A4,0) =
Cc,b[Av b)

Note that Axiom (A7) follows from (A6) and (A3).

The purpose of this section is to find a function D> which satisfies all seven
of the axioms (A1)-(AT7). For the application in the next section, (A5)—(AT7)
are the most important. They are also the most difficult to ensure, although
our definition of D in Definition 4.11 below is designed to make (A5)—(A7) as
apparent as possible.

The approach to constructing D> is as follows. We start with C° with the
order as in Remark 4.9 and observe:

LEMMA 4.10: The function C° satisfies (A1)—(A4)

For a pair a,b € T, the final Dg% will come from the preliminary ngb by
adding new elements in order to make (A5)—(A7) hold. It is not at all obvious
that enforcing (A5)—(A7) whilst retaining (A1)—(A4) is possible. This is the
content of the proof of Theorem 4.12 below.

By (A2), all of the elements of D%, must lie in C{fb.

Below we define a filtration of D°°, which will be the minimal (in the obvious
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sense of the word minimal) possible function satisfying (A1)-(A7). Before giving
the definition, consider the possible ways that (A5)—(A7) might fail to hold for

some Cqp. Either (A5) fails (in the “middle” of C,p; see Figure 8), (A6) fails
(on the “left”; see Figure 9) or (A7) fails.

: @

Figure 8. Failure of (A5).

Figure 9. Failure of (A6).

Definition 4.11 below can be thought of in the following way: Start with C°,
and “fix” every failure of axiom (A5)—(A7); after doing these repairs you will
have obtained D!, which still does not satisfy (A5)—(A7). Repairing D! yields
D2, and so on.
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Definition 4.11: For any pair a,b € T, we make the following definitions: Let
Dg,b = Cgb, and define inductively, for i > 0:

w=U (U o).

¢,deT * A<BeD; ,ND: ,

fz,b = U ( U Di,d(aaA]>7

deY AeDfume;d

= < U g’,b[A,b)), and

ceT * AeDi ,nD: ,
i+1 7 i i i
Da,b - “a,b U Ma,b U ‘Caqb U Ra,b'
Finally, we define

oo

oo 7

a,b — U Da,b'
=1

Notice that the set M, , fixes the failure of (A5) for D}, ;, and so on.
The following is the main result of this section, which will allow us to define
preferred paths in the next section.

THEOREM 4.12: Suppose that G is a 506-separated collection of convex subsets
of a 6-hyperbolic space Y. Then the function D> as defined in Definition 4.11
satisfies the axioms (A1)—(A7).

Definition 4.11 is tailored so as to make (A5)—(A7) as apparent as possible
(once it is known that D> satisfies (A2), (A5)—(A7) are immediate). As ex-
plained below, the hard part of proving Theorem 4.12 is Axiom (A2). We will
proceed by induction. On their own, Axioms (A1)-(A4) for D¢ do not seem
strong enough to imply Axioms (A1)—(A4) for D+, In order for the inductive
proof to work, we need to impose further conditions, which are encapsulated in
the following definitions.

Definition 4.13: Let a,b € T and C' € Dy, with a,b ¢ C. A pair of (n,a,b)-
guards of C is a pair (Z, W) (each of which may be either a point or a globule)
so that there exists x,y € T for which:

(1) C ey,

(2) Either Z =a ==z or Z € CE, NDg, and Z < C; and
(3) Either W =b=yor W € CK, nDz, and W > C.
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We inductively define (n, a, b)-sentinels of C' by saying that (n,a,b)-guards
of C are (n,a,b)-sentinels of C' and that if D is an (n, a, b)-sentinel of C' then
any (n,a,b)-guards of D are (n,a,b)-sentinels of C.

Remark 4.14: For any n,a,b and C as in Definition 4.13, (n,a,b)-guards of C
come in pairs (one to the left of C' and one to the right). A single (n, a, b)-guard
may occur in many pairs.

We also remark that for any n > 0, any a,b € T and any C' € G, a pair of
(n,a,b)-guards of C is also a pair of (n + 1,a,b)-guards of C.

We now introduce the property which will form the inductive hypothesis in
the proof of Theorem 4.12.

Definition 4.15: Given an integer n > 0, a pair a,b € T and a globule C' € G we
let B"™(a,b; C') be the conjunction of the following three statements:

(1) Ce Dy s

(2) C ecCk,; and

(3) either (i) C has a pair of (n,a,b)-guards; (ii) a € C; or (iii) b € C.

LEMMA 4.16: For any n > 0, any a,b € T and any C € G, if B"(a,b; C') holds
then B (a,b; C) also holds.

Definition 4.17: Let a,b € T and C,D € G. Suppose that v € a(a,b) and that
~ intersects both Ng(C) and Ng(D) nontrivially for some 5 < 2K. Suppose
also that C' < D in the order on ngb as in Remark 4.9.

Let y be the last point on v in Ng(C) and z the first point on v in Ng(D).
Define

+?(C, D)
to be the subsegment of v between y and z.

Proof of Theorem 4.12. Axiom (A4) is obvious. The (unordered) set theoretic
parts of (Al) and (A3) are also obvious. The set theoretic part of (A2) is the
key: By Remark 4.9, this gives sense to (and implies) all the statements about
ordered sets. Axioms (A5)—(A7) will then follow from the construction. Axiom
(A2) follows from the following inductive statement:

CrAamM 4.18: For i >0, all a,b € T and all C € G the following are equivalent:
(1) C e D:

a,b’
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(2) Bi(a,b;C) holds, and B (a, b; D) holds whenever D is an (i, a, b)-sentinel
of C.

Note that for any ¢ > 0, any a,b € T and any C € G, the statement “(2)
implies (1)” holds tautologically (by Statement 4.15.(1)).

We will prove Claim 4.18 by induction on .
Base Case: For any a,b € T and C € G, if C € Dj,, then B%(a,b;C).
Moreover, whenever D is an (0, a, b)-sentinel of C, B%(a,b; D) holds.

Proof (Base case). Suppose C' € Dg,zr If a € C or b € C, then the result is
immediate. Thus we may suppose that a,b ¢ C.

Statement 4.15.(1) holds by assumption.

Statement, 4.15.(2) holds because DY , = CJ, C CK,.

Statement 4.15.(3) holds because (a,b) form a pair of (0, a,b)-guards of C'.

Now suppose that D is a (0,a, b)-sentinel of C. This implies that D € DY
and the same argument applies. | /

InpUCTIVE HYPOTHESIS: Fix n > 1. For any 0 < ¢ < n, any a,b € T and
any C € Gif C € Dfl’b, then Bi(a,b; C) is true and Bf(a,b; D) holds for any
(i, a, b)-sentinel D of C'.

INDUCTIVE STEP: Consider a,b € T and C' € G and suppose that C' € Dy ;.
We wish to prove that B"(a,b;C) holds and that B"(a,b; D) holds for any
(n,a,b)-sentinel D of C.

Observe that if D is an (n, a,b)-sentinel of C, then it is in particular in Dy -
Therefore since C' € Dy, was arbitrary, it suffices to prove that B"(a,b;C)
holds.

By Definition 4.11, one of four situations must occur:

(1) CeDiy
(2) Ce MY
(3) Ce EZ;I; or
(4) Ce Rg’gl.
We deal with each of these situations in turn.

CASE 1: In this case B""!(a,b;C) holds by induction, and by Lemma 4.16
B"(a,b; C) also holds.

CASE 2: Suppose that C & DZ;I but that C' € MZ;I

Therefore, there are ¢,d € T and A, B € G so that

(1) A,BeD,'nD,", and
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(2) C e DA, B

We wish to show that B™(a,b; C) holds. Statement 4.15.(1) is clear.

We now prove Statement 4.15.(2) of B"(a,b; C).

Since C € ngl, the statement B"~1(c,d;C) holds by the inductive hy-
pothesis, as does B"~!(c,d; D) for any (n — 1, ¢, d)-sentinel D of C. Note that
A< C < B,soc¢d¢gC and C has a pair of (n — 1,¢,d) guards Z and W, by
property B" (e, d; C).(3). Suppose that x,y € T are the points associated to
C,Z and W from Definition 4.13.

Figure 10. Case (2).

We now define globules P and Q). In case Z = x = ¢, let P = A. Otherwise,
Z and A are both globules in ngl and we let P = max{A, Z} with respect
to the order on ngl. Similarly, if W = y = d, then Q = B and otherwise
@ = min{B, W}, see Figure 10. In the figure, P = Z and B = @, and they are
all globules.

CLAaM 1: P,Q € CK ™.

We only consider P, as the argument for @ is identical. If P = Z, then
ZeCK, Ccki

Thus suppose that P = A and that A # Z. There are now two cases,
depending on whether Z = x = ¢ or not.

IfZ=x=c,let ﬂgi’/K“‘M(Z, C) denote that portion of 8, between the last
point in Nss5(Z) and the first point in Ng155(C), and define ﬂii}K*M(Z, )

similarly. Note that if Niy55(A) and Njs(x) are not disjoint, then A = P
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is certainly contained in 05;55. Otherwise, since the singleton {Z} = {z} is
convex, Lemma 4.5 implies that the Hausdorff distance between ﬁgi’f( +59(7.0)
and 825,559 (Z, C) is at most 56. But A € D', so by the inductive hypothesis
Ace€ Cfd. Therefore, 3, 4 passes within K 450 of A = P, as required, see Figure
11.

Figure 11. Claim 1, in case Z = x = c¢. Dotted lines indicate

Suppose then that Z # x or Z # ¢. Then Z is a globule and is separated
from A by at least L;. By Lemma 4.5 again, the Hausdorff distance between
ﬂfj‘r"s(Z, C) and ﬂ;‘f?js‘s(Z, () is at most 5J. Once again we know by induction
that A € Cfd, which proves that 3, , passes within K + 56 of A, see Figure 12.
This proves Claim 1.

Figure 12. Claim 1, in case Z is not x and c. Dotted lines
indicate Nk (Z) and Ng(C).

CrLam 2: P,Q € CX,0.
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Once again, we only consider P, as the argument for () is identical.

If P= A, then P € Dg,;l so by induction we have B""!(a,b; P) and P €
cl, ccir.

Suppose then that P = Z and that Z # A (this is depicted in Figure 10).
Certainly we also have Z # B.

We know that A, B € DZ;l N DZ;I so by the inductive hypothesis A, B €
Cr,NCky.

Let Bap € ala,b) and B.q € afc,d) be arbitrary. Then §,; and (.4 pass
within K of both A and B. Since P = Z isan (n—1, ¢,d)-guard of C, and ¢ # Z
we know P € ngl and so by another application of the inductive hypothesis
P e Cfd. Therefore 3. 4 passes within K of P.

By Lemma 4.5, the Hausdorff distance between ﬁgj‘r’é(A, B) and ﬁfgfs‘s(/l, B)
is at most 5d. Thus, G, passes within K +59 of P, proving Claim 2 (see Figure
13).

Figure 13. Claim 2, in case A < Z. Dotted lines indicate

Note that whatever P and @) are, we always have P < C < Q. Since
P Qe Cfg”&s ﬂCffy%‘s, Lemma 4.5 implies that the Hausdorff distance between

ﬂfjloé(P, Q) and BEF99(P Q) is at most 50. Since S (P, Q) intersects
C, the geodesic G, passes within 56 of C' (Figure 14). This proves Statement
4.15.(2) of B™(a,b; C).

We now prove Statement 4.15.(3) of B™(a,b;C'). We claim that P and Q
form a pair of (n,a,b)-guards of C. It is certainly true that P < C' < @, and
that keeping the same x and y we still have C € Cg’y. Note that P and @ are
globules. Thus we have to prove

(1) P,Q € Dy,; and
(2) PQ e ny.
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Figure 14. Case (2), Statement 4.15.(2). Dotted lines indicate
Ni+56(P) and Ng155(Q).

Once again, we prove these statements for P, the arguments for @) being
analogous.

Suppose that P = A. Then P € D" '(a,b) € D},. Otherwise, P = Z and
A < P < B. Therefore P € DZ?[A, B], which implies, by the definition of D",
that P € /\/lgzl C D ;- This proves Statement 1 above.

We now prove Statement 2. If P = Z, then P € C;fy, so we are done. Thus
suppose that P = A, and Z < A.

We know that A € D" 1(c,d). Certainly, A < C so d ¢ A. Suppose that
c € A. This forces Z = x = ¢, by Definition 4.13, sox € Aand A € ng C Cwlfy.

Suppose now that ¢ ¢ A. Then the inductive hypothesis and property
B"~Y(c,d; A) imply that A has a pair of (n — 1, ¢, d)-guards, which we denote
Z 4 and Wy, and an associated pair of points x4,y4 € T, as in Definition 4.13.

We know that A € CY and that

TAYA
(1) either c =z = Zs or Zo €CL, ﬂDZ;l; and
(2) either d = YA = WA or WA c Cﬁq,yA HDZ;I

In case Z,4 is a globule, we have Z4 < A, and in case W4 is a globule we
have A < W4 (see Figure 15).

We now define P4, which may be either a point or a globule. In case Z =
x = ¢, define Py = Z4 (which may be either a point or a globule). In case Z
is a globule, we consider whether Z,4 is a point or a globule. If Z,4 is a point,
then P4 = Z. Otherwise P4 = max{Z, Z,}. Note that if Z is a globule, so is
Py.
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ﬂz,y

Figure 15. Case (2), Statement 4.15.(3) (one of many possible arrangements).

We also define a globule Q4. If Wy = yq4 = d, then Q4 = C. If Wy is a
globule, then Q4 = min{Wy4, C}.

CLAIM 3: If Py is a globule, then Py € CEF2 N CE . In any case Q4 €

TAYA
K+568 K+56
CQJA;yA N Cw y -

The proof of this is similar to those of Claims 1 and 2.

Let 8., 4. be any geodesic between x4 and y4. In case Py is a globule, Claim
3 and Lemma 4.5 imply that the Hausdorff distance between 65:;25 (Pa,Qa)
and ijloé(PA, Q4) is at most 50. Since Py < A < Q4 and [, ,, intersects
A, the path 8, , passes within 56 of A. Thus in this case P = A € Cgfy,as
required.

Suppose that P4 is a point (see Figure 16). In this case, Z = x = ¢ and
Zpa=x=1x4,80 Py=x=u1x4. In case N55(P4) and A are not disjoint, z lies
within 56 of A, and certainly A € CF,. Otherwise, the singleton {z} is convex
so Lemma 4.5 implies that the Hausdorff distance between those parts of 3, ,
and g, 4, between Nss(x) and Niy55(C) are at Hausdorff distance at most
56 from each other. Since A € CgAyyA this implies once again that P = A € ny
as required.

This finally proves that P and @ form a pair of (n,a,b)-guards of C, and
finishes the proof of Case (2).

CASE 3: Suppose that C & Dg;l U MZ;l, but that C' € Lg’zl.
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lngvyA

BCI),y

Figure 16. Case (2), Statement 4.15.(3) (another of many pos-

sible arrangements).

Therefore, thereis d € T and A € ’DZ;I N DZ;I so that C' € DZ;l(a, Al

We are required to show that B"(a,b; C) holds. As usual, statement 4.15.(1)
is immediate.

The inductive hypothesis implies that B"~1(a, d; C) holds.

Since C ¢ DZ;l and A € DZ;I are globules, they are different and C' < A.
Therefore, d ¢ C, and so either a € C' or C has a pair of (n — 1, a, d)-guards. If
a € C, then statements 4.15.(2) and 4.15.(3) are clear. Therefore, we suppose
that a ¢ C. We now prove 4.15.(2).

Let Z and W be a pair of (n — 1, a,d)-guards for C, with associated points
z,y € T. Note that either Z7 = = a or Z € ny N DZQI. Also, either
W=y=dor W e(l’;fyﬂDZ’;l.

Let P = Z and @Q = min{A, W}. Note that P may be a point or a globule
whereas @ is definitely a globule.

Then following is analogous to Claims 1, 2 and 3:

CLAIM 4: If P is a globule, then P ¢ Cflj'sé NCEFS . In any case Q €
€IS e

An identical argument to that which followed Claim 3 implies that C € Cfb,
which proves 4.15.(2).

We now prove 4.15.(3). Note that b ¢ C and we are assuming that a & C.
Therefore we are required to show that C has a pair of (n, a,b)-guards. We will
show that P and @ form such a pair (with associated points z and y).
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If P = a, then P = x also, so 4.13.(2) holds in this case. Otherwise, P = Z is
a globule and P < C' < A (See Figure 17). Since P, A € Dg,gl, and A € Dg;l
this implies that P € EZfbl C Dy ;- Thus we have proved 4.13.(2).

a ﬁa,b

@ Pa,d

Bey

Figure 17. The proof of Case (3), Statement 58" (a, b; C), in case
C has (n — 1, a,d)-guards.

We now show 4.13.(3). Note that @ is a globule and that C < Q. If Q = W,
then W is a globule and W € C, N DZ’;l. In this case also W € D;’;l(a, ] C
£y, € Dz, This proves 4.13.(3) in this case.

Suppose then that Q = A # W. Then Q € Dy, and we need only prove that
QecCk,

By the inductive hypothesis, since A is an (n — 1, a,d)-sentinel of C' and
C e ’Dg_gl, property B""1(a,d; A) holds. Certainly C < A, and both are
globules,/so a¢g A. Ifd € Athen since Q = A and A # W, it cannot be that W
is a globule. Therefore, in this case d =W =y, soy € A and A € ngy - ny.

Suppose then that d ¢ A. In this case, 4.15.(3) implies that A has a pair
of (n — 1, a, d)-guards, which we denote by Z4 and W4, with associated points
24,94 € Y (See Figure 18). As before, we define Py = max{Z,C} and
Qa = min{W,,W}. Note that P4 is always a globule but Q4 might be a
point.

We now make the customary

CLAaM 5: If Q4 is a globule, then Q4 € Cg"’;j N Cf;‘“. In any case
PA c CK+56 N Ci{;‘%.

TAYA
Since A € €0 4y the argument following Claim 3 now implies that A € Cffy
as required. This establishes 4.13.(3). This proves that property B"(a,b;C),
which finally completes the proof of Case 3.

CASE 4: Finally, suppose that C ¢ Dgﬁzl but C € RZ;I
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By

Figure 18. Case (3), proving that P and @ form a pair of
(n,a,b)-guards for C' (when Q = A).

The proof that B"(a,b; C) holds is identical (with a left-right reflection) to
that of Case 3.

This completes the proof of Claim 4.18, which as we noted above implies that
axiom (A2) holds for the collections D} - In turn, by Remark 4.9, this gives
a coherent order on each of the sets. The function D> was designed to make
axioms (A5)—(A7) immediately apparent, once axiom (A2) holds, and axioms
(A1), (A3) and (A4) are now clear also.

This completes the proof of Theorem 4.12. |

COROLLARY 4.19: Suppose that A, B € G, and that ay,as € A and by,bs; € B.
Then D

= o0
ai,br az,bz*

Also, if x € Y, then D° . = D

ai,T az,r’

Proof. Axiom (A1) implies that A, B € D°, NDS, . An application of (A5)

a,by az,bz"

implies that DY, C D3, , and, symmetrically, D5, C DY, (note that we
are implicitly using the order and separation properties of globules).

The proof of the second assertion is similar (using axiom (A7) instead). W

Notation 4.20: Suppose that A, B € G. Then we denote the set D57 for a € A
and b € B by D’ 5. This is well-defined by the above corollary.
Similarly, if # € T and A € G, then the sets D and Dy’ are well-defined.
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5. Preferred paths, preferred triangles, and skeletal fillings

Throughout this section, and the remainder of the paper, G will denote a
torsion-free group which is hyperbolic relative to a (finite) collection of (finitely
generated) subgroups P. We suppose that S is a finite compatible generating
set for G, and that § is the constant of hyperbolicity for X (G, P, S).

In this section we define preferred paths. Preferred paths give an equivari-
ant, symmetric quasi-geodesic bicombing of the space X = X (G, P, S), and will
be a key to our construction of the bicombing in Section 6 below. Having de-
fined preferred paths, we then use them to understand the combinatorial types
of triangles whose sides are preferred paths.

We fix some notation and terminology: Recall that § gives rise to the con-
stants K = 10§, L; = 100K, and Lo = 3L;. Denote by H the collection of
Li-horoballs in X (Definition 3.21). In this section, the word ‘horoball’ (with-
out a prefix) will refer to an element of H.

Suppose that P is a horoball and N > 0. There is a unique N-horoball which
intersects P nontrivially. We denote this N-horoball by P .

Any horoball P has a single accumulation point in 0X, which we denote ep.
Denote by 05 X the collection of such accumulation points.

Definition 5.1: Recall that in Lemma 3.27 we chose a G-equivariant antisym-
metric geodesic bicombing . Let Q(X) denote the set of unit-speed geodesic
paths in X, up to orientation preserving reparametrization. We will extend -y
to an antisymmetric map from most of (X UH U dxX)? to Q(X). (If Ais a
horoball, we leave y(A4, A), y(ea, A), 7(A,e4) and y(ea, e4) undefined.)

First, for each pair of horoballs A, B, we choose (in an antisymmetric and G-
equivariant way), a geodesic (A, B), which realizes the distance between A and
B. Second, for each point a € X and each horoball A € H, we (equivariantly)
choose a geodesic path v(a, A) which realizes the distance from a to A. The
path (A, a) is the time-reverse of v(a, A).

Third, we extend « to points in 0y X. If x € X and ey € 0y X, then we
define y(z, e4) to be the concatenation of v(xz, A) with the vertical geodesic ray
in A from the endpoint of y(z, A) to e4.

Finally, if e4,ep € 05X correspond to distinct horoballs A and B in H,
then we define y(e4,ep) to be the path (A, B), together with vertical paths
on either end. Note that (e, ep) is always a geodesic line.
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Remark (about torsion) 5.2: As noted in Remark 3.29, 2-torsion may prevent
a choice of paths as in Definition 5.1 above.

Also, if there is torsion, then parabolic subgroups of G could intersect non-
trivially, which makes the G-equivariance problematic.

For this section, these problems can be solved by considering the union of all
shortest paths between A and B (of which there are only finitely many, for a
given A and B). In future sections, this is a more subtle problem: in fact we
should also use the “average” as well as the union.

Similarly, we should take the union (or average) of all geodesics from a point
a to a horoball A which realize the distance from a to A.

5.1. DEFINITION AND BASIC PROPERTIES OF PREFERRED PATHS. In this sub-
section we apply the construction of Section 4. The family H satisfies the
hypotheses of Theorem 4.12, therefore there is a function D*°: X x X — Oy
satisfying Axioms (A1)—(A7).

Suppose that a,b € XU0»X. We now associate a collection of horoballs H p
to the pair {a,b}. If a,b € X, then H,p = D35 If a € X and b = ep € In X,
then H,p = Dy°p as defined in Notation 4.20. Similarly, if a = e4 € Oy X and
be X, then H, = Diﬁb and if a = ey, b=ep € Oy X, then H,p = DY -

Remark 5.3: For any a,b € X U 0y X, the set Hqp is a linearly ordered col-
lection of horoballs, and this order is compatible with the order obtained from
projection to y(a,b).

Definition 5.4: For each A € H, and each pair z,y € AU {ea}, we define
o(x,y) = o(y, x) in the following manner: If z = ey4, then o(x,y) is the vertical
ray from y to e4. Thus suppose that z,y € A. Then for some ¢ € T' we have
x = (t,p1,k1) and y = (¢, p2, k2) . In case p; = po, then o(z,y) is the vertical
geodesic between  and y. Otherwise, suppose that dp(p1,ps2) satisfies

2V < dp(p1,pe) <2V,

for N € N, where dp(p1, p2) is the distance between p; and py in P, with respect
to the generating set S N P. Then define R’ = max{N,ky,k2} and R = R/,
unless R = Ly in which case R = Ly + 1. Then define o(z,y) to be the path
which consists of vertical paths from z and y to depth R, and then joins the
endpoints of these vertical paths with the (unique) edge of length 1 at depth R.
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Let m be the midpoint of the unique horizontal edge of o(x,y). The point m
cuts o(z,y) into two geodesic segments. The path o(x,y) is not usually itself a
geodesic, but is very close to one.

Remark 5.5: We insist that the paths o(z,y) do not have a horizontal edge at
depth Ly in order to simplify some future arguments. In particular, this means
that our preferred paths are ‘transverse’ to D~!(Ls).

LEMMA 5.6: Let x and y lie in the same horoball A. The path o(z,y) is
Hausdorff distance at most 5 from v(x,y).

Proof. The geodesic vy(x,y) coincides with o(z,y) to depth S, where S is the
maximum depth of y(z,y). Moreover, the sub-path o(z,y) N A% has length at
most 7, while the (horizontal) sub-path v(z,y) N A has length at most 3 (see
Lemma 3.10). Thus o(z,y) and ~(z,y) are Hausdorff distance at most 5 from
one another. ]

We now want to use the collections of horoballs H to define preferred paths
between any two points in X U 0y X.

Let o, f € X UOx X, and let Ho g = {A1, ..., Ax}. Note that H, g is a finite
linearly ordered set.

Definition 5.7: Preferred paths. If H, g is empty, then we define

Pa,p = 7(()" 6)

If H. 5 contains a single horoball A, then we set

Pa,p = ’}/(OZ, A) U U(a17a2) ) 7("476))

where a1 is the terminal point of v(«, A), and as is the terminal point of (3, A4).
Otherwise, we define the preferred path p,, s to be

Yo, Ap) Uri Uy (A, Ag) Urg U+ - Uy(Ag—1, Ag) Urp Uy(Ag, B),

where the r; are paths o(a; 1, ai2), where aq 1 is the terminal point of v(a, A44)
and otherwise a;; is the terminal point of v(A;_1,A4;); the point ag ) is the
terminal point of v(Ag, 3) and otherwise a; 2 is the initial point of y(A;, Ai+1).

This describes p, g as a set, but we will often consider it as a map, and
parametrize by arc length.
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x Y(z,y) Yy

Ay
A3 An—l

Figure 19. A preferred path.

Remark (about torsion) 5.8: We have indicated in Remarks 3.29 and 5.2 how
the paths vy(z,y) and y(A4, B) might be defined using averages in order to ensure
antisymmetry and G-equivariance.

In this framework, preferred paths will consist of all of the “possible” preferred
paths, superimposed like the states of a quantum system.

These more complicated preferred paths will continue to have many of the
properties that honest preferred paths do, though these properties become a
deal more cumbersome to state, let alone prove.

We now make a generalization of Definition 4.17.

Definition 5.9: Suppose that the path (-, -) passes within 8 < L; — 2§ of the
(distinct) horoballs A and B. Define

’yle(W )
to be that portion of (-,:) which connects the S-neighborhoods of A and B,

where the symbol ‘-’ is used to mean a point or a horoball.

Definition 5.10: p, , denotes the path obtained from p., by replacing each
subsegment of the form o(a; 1, a;2) by the corresponding geodesic v(a; 1,a;2).

LEmmA 5.11: If A; € Hyy, then either p, , N Al is geodesic for any L > 26,
ord(a;1,ai2) <3, where a; 1 and a; o are the first and last points on Doy N A;.

Proof. Let p, , N AN D'(25) = {b1,b} and let v = , p,. This consists of
two vertical segments, and a single horizontal segment of length at most 3.
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If v intersects D~!(L1) nontrivially, then the vertical segments in  and the
vertical segments in p, , N AL coincide, and the horizontal segments have the
same length. Therefore, in this case, p, , N Al is a geodesic.

Otherwise let ¢; and ¢y be the deepest points of the vertical subsegments of
v, with ¢; lying directly above a; 1 and c directly above a; 2. Then the distance
between c¢; and ¢y is at most 3, which implies that the distance between a; i
and a; 2 is less than 3. [ |

5.1.1. Parametrizations. We pause briefly to discuss the parametrizations of the
paths ¥(z,y), pzy and D, - These parametrizations are always by arc length.
For each z,y € X U0x X choose I, y, .y and J 4 as follows:

If 2,y € X, then Z, ,, = [0, length(p, )], and similarly Z,. , = [0,length(p, , )]
and Jy, = [0,d(z,y)].

If v € X and y € 9y X, then all of the intervals are [0, c0).

If © € OnX, then each of the paths y(x,y), ps, and P, , begins with an
infinite vertical ray. If y is contained in the same L;-horoball as x, then the
three paths coincide and we define 7, , =7, , = Jzy = (—00, L1 — D(y)].

Suppose then that x € 9 X and that y is not contained in the same L;-
horoball as z. Let 2’ be the first point on p,, contained in D~*(L;). Then
the interval Z, , is already defined, and we define Z, , = (oc0,0] UZ, 4, and
suppose that p, ,(0) = z’.

We make similar definitions for Z, ,, and J, .

PROPOSITION 5.12: For any two points x and y in X U 05 X, there are nonde-
creasing functions

f=Ffoy: Tuy — Tuy
and
9= 9ay: Joy = Loy
satisfying:
(1) For all but finitely many points t € I, and s € Ty, f'(t) and ¢'(s)

exist and are either O or 1.
(2) For anyte€Z,,, and s € J,, we have

d(pay(t), (2, y)(f(t) < K +120 49, and

d(pzy(9(8)); v(z,y)(s) < K +125 +9.
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(3) If py,(t) is outside of AL+=(KE+29) for every A € H,.,, then f'(t) = 1.
Similarly, if (z,y)(t) is outside of AL*=(K+20) for every A € H, ,,
then ¢'(t) = 1.
(4) Let A € Hyy and A = AL =(E+20) Lot [t1,t5] = p, L (A) and [s1, s2] =
v(z,y) " (A). The total waiting times in A, ie., the maximum of the
measures of

{t1 <t <ty: f/(t) =0} and {s1 <s<s3:9'(s)=0}

is at most 4K + 180 + 9. Moreover, the total jumping times in A, i.e.
the maximum of the measures of

{51 <s<s9: At f(t)=s} and {t; <t<ty: Bs, g(s) =t}
is at most 4K + 186 + 9.

Proof. We suppose for the moment that x,y € D70, L;]. We will deal with
the other cases at the end of the proof. In fact, we only deal with the cases that
x,y € D70, L;] U 9 X. The other cases are similar, but are not required for
later applications.

We use the same symbol for a path and its image, throughout. Note that a
map from the domain of one path to the domain of another induces a map from
the image of one path to the image of the second. Conversely, if both paths
are embeddings, then a map between their images induces a map between their
domains.

Recall that the path p, , is defined to be a concatenation of geodesic segments
outside of horoballs, and paths of the form o(u, v) through horoballs.

Consider the difference between the paths o(u,v) and v(u,v). This consists
of a path of length at most 9 in o(u,v) and a path of length at most 5 in y(u, v).
Define functions

T, 7T

= g1
ey, and Ip,-—1,

Y
so that the induced maps on the intersection of the images are the identity, and
the induced maps on the differences send a component to its initial point.

The functions f; and g; have derivatives at all but finitely many points, the
derivatives are always 0 or 1, and the waiting times and jumping distances are
at most 9 per horoball in H ,.

It is not difficult to see that it suffices now to define appropriate functions

- f2 g2 =
Loy — Toy and Tpy —Tgy.
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There are three cases, depending on whether H, , is empty, contains a single
horoball, or contains at least two horoballs.

Case 1: If H, , is empty, then p,, = D, , = ¥(z,y), and we can set both f
and g equal to the identity map.

CASE 2: Suppose H,, is a single horoball. This case is strictly easier than
Case 3, and we leave it as an exercise.

CASE 3: There is more than one horoball in H, . By Axiom (A2), the inter-
section y(z,y) N Afl_K is non-empty for each 1 < i < n.

Let u be the first point on ~y(x,y) which intersects AlLl_K, and let v be the
first point on p,, , which intersects AlLl_K. We define f; and g» to be the identity
on [0, (u,v),]. Note that the segments p, [0, (u,v).] and v(z,y)[0, (u, v).] have
the same length and are identified under the map to the comparison tripod
Yu,v,z- Thus, for example, the distance between p, () and v(z,y)(f2(t)) is at
most ¢ for all t € [0, (u,v);]. There is clearly no waiting or jumping in this
interval.

Similarly, let w be the last point on 7(z,y) intersecting A,, and let z be the
last point on p, , intersecting A,,. We can define the map

fai {[Payl = 12000 P2y || = [d(@,9) = (w,2),,d(, )],

to be the unique (orientation preserving) isometry, and go = (f2)~! on this
interval. Once again, the images of these intervals are identified under the map
to the comparison tripod Y,, » ,. We also define y; ,, = v(z,y)(d(z,y) — (w, 2)y)
and yo,n = By, (d(z,) — (w,2),).

We now define the maps fo and g2 on the region between adjacent horoballs
A; and A;qq.

Let 1 <7 <n-—1. Let a be the last point on y(x,y)ﬂAiLrK, and let b be the
first point on y(z, y) ﬂAiLJHK. Similarly, let ¢ be the last point on p, , ﬂAiLlfK
and let d be the first point on p, , N AiLil_K. Suppose that a = v(z,y)(t,), and
define times ¢y, t. and ¢4 analogously. By drawing two comparison tripods (one
for the triangle A(a,b, ¢) and one for A(b, c,d)) we see that

Lo = [ta+ (b:0)asty = (e, )] and e = [te+ (a,b)esta — (b, )al,

have the same length (note that between AiLl_K and AiL_ﬁl_K, both p, , and

~v(x,y) are geodesics parametrized by arc length).
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Define fo: Ioq — Ip and go: I, — 1.4 to be orientation preserving isome-
tries. Note that the comparison tripods imply that for ¢ € I,

d(v(z,y)(t), Py, (92(1))) < 26,
and for s € I 4,

APy 4 (5), (2, y)(f2(5))) < 26.

We claim now that those parts of Z,, on which f, is not yet defined
are segments Iy,...,I, so that p,  (I;) C Ngg(Afl_K), and similarly that
those parts of J,, on which g is not yet defined are segments If,..., I} so
that v(x,y)(I;) C N25(A]LPK). To see this consider, for example, the points
Y(z,y)(ta + (b,¢)a) and D, ,(t. + (a,b).), for the points a,b,c and d as above.
These are typical endpoints of the intervals on which f; and go are not yet de-
fined. Any geodesic between a and c lies entirely within the convex set AiL 1—K
Therefore, the point ¥(x,y)(ta + (b, ¢)s) lies within § of AX' 7 because it is
in the preimage of the central point of the comparison tripod Y, ;.. Now,
P y(te + (a,b).) lies within ¢ of the point on the geodesic [c,b] in the preimage
of the central point of Y, 5 ., and in particular, p, , (t. + (a,b).) lies within 26
of AiL 1=K Similar arguments for all other points prove the claim.

We now define fo and go on the remaining subsegments, I; and I ]’ We
fix 1 < j < n. Let z; and y; be the images of the endpoints of I]{ under
~(x,y), and let 25 and y, be the images of the endpoints of I; under Dyy- The
path p, , (I;) is a concatenation of three geodesics, one traveling towards A; as
quickly as possible, one through A; and one traveling away from A; as quickly
as possible. Let x3 be the first point on p, ,(;) N A; and let y3 be the last
point on p, . (I;) N A; (see Figure 20.)

It is clear from the previous arguments that d(z1,z2),d(y1,y2) < 26. Also,
xy is within K + 26 of A;. However, between zo and z3, the path p, , is
traveling as quickly as possible towards A;, so d(z2,23) < K + 20. Similarly,
d(yg,yg) < K+ 26.

Suppose that z1 = y(z,y)(s1), y1 = V(z,y)(s2), T2 = Py, (t1), 23 = Py (t2),
Ys =Dy, (t3) and y2 =D, , (ta).

For t € [t1,12], define fo(t) = s1 , and for ¢ € [t3,t4] define fo(t) = so.

Drawing comparison tripods as in Figure 21 allows us to see that

Ji = |51+ (23,91)2,, 52 — (3737y3>y1}7 and
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Jo = |ta + (zl,yl)m3,t3 - ($3ayl)y3:|

have the same length.
Assume first that J; and Jo are nonempty, and define fo: Jo — J; and
g2: J1 — Js to be orientation preserving isometries.

_xl et %1 = V(@.y)
= Doy
AR
Figure 20. v(x,y) and p, , near A; € H, .
7 N
T _
? Y2

Figure 21. Comparison tripods for the triangles in Figure 20.

It remains to define fo on the intervals K; = [tg,tg + (xl,yl)zs} and Ky =
[tg — (gcg,y1)y3,t3}, and ¢go on the intervals K3 = |:81,81 + ($3,y1)$1:| and

K, = {52 — (x37y3)y1,32] Since d(x1,x2) < 26 and d(z2,x3) < K +2§, we have
d(z1,23) < K + 46. This implies that the lengths of K7 and K3 are at most
K +44. The same is true of the lengths of Ky and Kjy.
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If t € K, define fo(t) = s1 + (z3,y1)s,- If t € Ko, define fo(t) =
Sg — (x3,y3)y,- If s € K3, define ga(s) = to + (T1,41)zs- If s € Ky, define
92(8) = t3 — (23, Y1) ys-

If J; and Js are empty, we must define fo and go slightly differently:

F2([tz t2 + (Y1, Y3)s]) = 51
Fa([t2 + (Y1, Y3) s, ta

( )
([81, S1 + (y1, $3)5L’1])
(I )

52
g2 to
t3

g2([s1 + (y1,%3) 2, S2

In this case, the intersections of v(z,y) and Py,y With Afl_K are quite small.

We have now defined fo and go in the case that x,y € D70, Ly]. It is
not difficult to see that the functions f = fs o f; and g = ¢ o g2 satisfy the
requirements of the proposition. In fact (and this is used below), we have shown
that they satisfy the requirements of the proposition with the constants reduced
by 69.

Finally, we now turn to the case that one or both of x,y lie in 0y X.

Suppose ¥ € OxX and y € D7Y0,L;]. As in the discussion above the
proposition, let 2’ be the first point on p, , so that 2’ € D7!(L;). Let 2" be
the first point on 7, , so that 2’/ € D=1(L;). Then Z, , = (—o0,0] UZ,/, and
Tzy = (—00,0] U Ty . Note also that pgr, = pm,y|Ix/,y’ by the definition of
preferred paths.

We define f3, to be the identity on (—oo,0]. If we can prove that d(z’, z"") <
60, then there are obvious maps ¢: Jp/,y — Joy and ¢: Ty — Ty, wWhich
identify the long side of the comparison tripod Y ./, and collapse the short
sides to the center of the tripod. If we have such functions ¢ and v, then we
define

Foaltr, = 60 fury: Tory = Tor
and
Gol T, = Gty 00t Toy — Tary.
These will satisfy the requirements of the proposition so long as d(x’,z”) < 64.

To see this, we argue as follows: Let o be that part of p, , from x until the
second horoball in H,, (or to be all of p, , if H,, is a singleton). It is not
difficult to see that o must be a geodesic, because that part after 2’ travels away
from the horoball as quickly as possible (by the definition of preferred paths).
Let z be the endpoint of o which is not z’. By Axiom (A2) of Section 4, and



Vol. 168, 2008 RELATIVELY HYPERBOLIC DEHN FILLING 383

Lemma 4.5, there is a point 2’ € y(z,y) which lies within K of the horoball, A,
which contain z. The geodesic between z and 2’ lies entirely within the convex
set AL1=K_ The (partially ideal) triangle with vertices z, z, 2’ is 36-slim, which
proves that d(z’,2"”) < 66 (because both p,, and ~y(z,y) are vertical on the
interval (—o0, 39).

We now suppose that z,y € 04 X. Then there are points z’,y’ € p,, and
2", y" € y(x,y) so that

Ty = (—00,0] ULy yr U[|par,y|, 00),
and
Toy = (00,00 U Torryr U [d(2", y"), 00).
As before, d(z',z"),d(y'y,”) < 65. Thus, there are obvious functions

¢,: jm/,y/ — jz//,y// and 1/}/: jz//yy// — jx’,y’ and we make the fOHOWiIlg defini-
tions:

t, if t € (—00,0)
foy(t) = § &' (for (1)), if t € Loy, and
t+(d(@",y") = Iparyr|)  otherwise,
and
t, if t € (—00,0)
9oy () = V' (far .y (1)), if t € Zor,y/, and

t+ (|par | —d(z”,y")) otherwise. [ |
We now state a couple of corollaries of Proposition 5.12

COROLLARY 5.13: For any a, b € XU0x X, the Hausdorff distance between p s
and 7(a,b) is at most K + 126 + 9. The Hausdorff distance between p, y[t1, to]
and v(a,b)[f(t1), f(t2)] is at most 3K + 216 + 14.

Proof. The first assertion is obvious from Proposition 5.12.(2). Suppose that
t € [t1,t2]. Since the function f from Proposition 5.12 is monotone, there is some
s € [f(t1), f(t2)] so that f(t) = s. By Proposition 5.12.(2), d(y(a, b)(s), pa,p(t) <
K + 126 + 9. Conversely, suppose that s € [f(t1), f(t2)]. It follows from
monotonicity and Proposition 5.12.(4) that there is a point s’ € f([t1,t2] with
|s — | < AEHBIEI Tt follows that v(a,b)(s) is no further than K + 126 + 9 +
w < 3K + 216 + 14 from pq p[t1, t2]. |
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COROLLARY 5.14: The path p, , is a (A, €)-quasi-geodesic, for
A=2 and e=20K + 1206 + 72.

Proof. Let t; and to be points in [0,length(p,, )], and let x1 = p,,(t1) and
Ty = Pay(t2). Since p, , is parametrized by arc length, |to —t1| > d(x1, x2) is
automatic.

Let 2} = v(z,y)(f(t:)), for i € {1,2} and f as described in Proposition 5.12.
Then d(x}, 24) < d(x1,22) + 2(K + 12§ +9). The arc length |t2 —t1] is at most
|f(t2) — f(t1)] = d(}, 2%) plus the amount of time in [t1, ¢2] that f/(¢) = 0. The
number of horoballs in H, , that p, , passes within K + 26 of between time ¢;
and to is at most 2+ ‘tz tll ; the amount of time f’(t) = 0 when p, , () is near a
horoball is at most 4K + 185 +9 < 3L1, by part (4) of Proposition 5.12. Thus

to —t
o — 11| < d(),2h) + (2+ %71‘)(4K+185+9),
1

which implies
4K +180+9

1
P <(1—
pltz —tal = Ly

)|t2 —ty| < d(a}, 7)) + 24K + 185 + 9),
and so
[t — t1] < 2d(2,25) + 4(4K + 185 4+ 9)
<2d(z1,m2) + 4(K + 126 +9) + 4(4K + 185 4+ 9)
=2d(ry,22) + 20K 41200+ 72 N
We now make some some other useful observations about preferred paths.

LEMMA 5.15: Preferred paths are G-equivariant.

Remark 5.16: It follows from Corollary 5.14 that sub-paths of preferred paths
are quasi-geodesic, and hence form ¢”-slim triangles for some §”. However, the
8" coming from (A, €)-quasi-geodesicity is much worse than the ¢’ below, and
our previous choice of L; secretly takes into account the particular bound given
in the next proposition.

PROPOSITION 5.17: There exists a constant
1
0 =6K +485 +28 < ZLl

so that any triangle or bigon whose sides are sub-paths of preferred paths is
§'-slim.
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This includes triangles any or all of whose vertices are in Oy X.

Proof. Let P, @, and R be three points in X U 05X, joined by parts of pre-
ferred paths pas, peq and pey. Specifically, suppose that pgp[ti, t2] joins P to @,
Pedlts, ta] joins @ to R, and pey[ts, tg] passes from R to P, where ¢; € [—00, 00)
for i odd and ¢; € (—o0, 00] for i even.

By Corollary 5.13, the side pgplti,t2] is Hausdorff distance at most
3K + 216 + 14 from the geodesic segment v(a, b)[f(t1), f(t2)], where f = fqp is
the function from Proposition 5.12. Furthermore, the endpoints v(a,b)(f(t1))
and y(a,b)(f(t2)) of this segment are (if not ideal) at most K + 126 + 9 from
P and @ respectively, by Proposition 5.12.(2). Similar statements can be made
about the other two sides. If none of the endpoints of the geodesic segments are
ideal, they may be joined together by segments of length at most 2(K +12§+49),
to form a geodesic hexagon, which must be 49-slim. Otherwise, they may be
partially joined up to form a pentagon with one ideal vertex, a quadrilateral
with two ideal vertices, or simply an ideal triangle. Call the (possibly partially
ideal) polygon so obtained H. Subdividing and using Lemma 2.11, it is easy to
see that H is 6J-slim.

Suppose that = € pgp[t1,t2]. There is some point x’ on y(a,b)[f(t1), f(t2)]
at most 3K + 210 + 14 away from z (see Figure 22.) Since H is 66-slim,

Figure 22. The generic case is pictured. It is also possible for
2" to lie on one of the dashed segments, in which case it is even
closer to the other two sides.

there is some point 2’ on another side of H so that d(z/,2') < 64. If 2’ is on
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e, d)Lf(ts), £(t2)] ot (e, f)F(ts), £(ts)], then there is a point = on pualts, t4] on
Peflts, te] with d(z,2") < 3K +216+14. Otherwise, 2’ is at most K +125+9+4¢
from one of the vertices of our original triangle. In either case x is within
2(3K + 210 + 14) + 65 = 6K + 486 + 28 of one of the other two sides of the
triangle. ]

Remark (about torsion) 5.18: Any of the ‘possible’ preferred paths referred to
in Remark 5.8 will satisfy all of the above properties, and an identical proof
suffices to establish this.

5.2. PREFERRED TRIANGLES.
Definition 5.19: Let A be a 2-simplex. A preferred triangle is a continuous
map

Y 0A — X U0y X

so that if e is one of the three sides of A, then |, is an embedding, whose
image is a preferred path.

Remark 5.20: If ¢: 0A — X U 0y X is a preferred triangle, then 9| is
injective.

Assumption 5.21: For ease of exposition, we will always assume that if
P 0A — X U0xX is a preferred triangle, then ¢ does not send the ver-
tices of A to D™Y(Ly). In our applications, this will always be the case. The

following definitions can be extended to the case that vertices are sent by 1 to
D~1(L,), but at the expense of making the statements a bit more cumbersome.

For the rest of this section, we fix a preferred triangle
v: OA - X Uy X

so that 1(v) # Ly for v € A, We refer to the elements of A(®) as corners.

We next define a skeletal filling of a preferred triangle. This filling will
take the form of a 1-complex (with 3 different kinds of edges) inscribed on the
2-simplex A.

Definition 5.22: The points in (Do)~ (Ly) will be referred to as Lo-vertices.

We now describe the different types of preimages of Lo-horoballs which can
occur in a preferred triangle.
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Definition 5.23: Suppose that P € H is such that P2 N1)(0A) # (). Recall that
the unique point in X which is a limit of points in P is called ep.

(1) If ~Y(PL2 U ep) contains a single corner of dA, then we say that
Y~ 1(PL2 Uep) is a bite.

(2) If ~1(PE2 U ep) intersects exactly one side of the triangle A, then
Yp~1(PL2 Uep) is a nibble.

(3) If =1 (PL2 Uep) intersects exactly two sides of the triangle A and is
not a bite, then =1 (PL2 Uep) is a dip.

(4) If p~1(PE2 Uep) intersects all three sides of the triangle A, then it is
a plunge.

See Figure 23.

a b v ¢ d
bite nibble dip plunge

Figure 23. Possibilities for the preimage of a single Lo-horoball
are shown in bold. For any letter x, the vertices x and 2’ form
a pair (Definition 5.26).

LEMMA 5.24: Any Lo-vertex is in the boundary of a unique bite, dip, nibble,
or plunge.

LEMMA 5.25: There is a partition of the Lo-vertices into sets, {S;}, of cardi-
nality 2 , so that if S; = {z,y}, then d(¢¥(x),¥(y)) < 1.

Proof. Suppose that = is an Ls-vertex. Then z is in the boundary of a unique
bite, dip, nibble, or plunge. We consider each of them in turn, in order to define
the set S; of which z is a member. Let P2 be the La-horoball containing ¢(x).
We delay the proof that if S; = {z,y}, then d(¢)(x), ¥ (y)) < 1 until later in the
proof.

Suppose that x is contained in the boundary of a bite. Then there is a unique
Lo-vertex y # x in A so that 1(y) € PL2. Define S; = {z,y} in this case.
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Suppose that = is contained in the boundary of a dip. Then the set of La-
vertices on the boundary of this dip has cardinality 4. We partition this into
two sets by pairing the Lo-vertices on different sides which are closest to the
common vertex of JA.

Suppose that x is contained in a nibble. Then the boundary of the nibble has
cardinality 2, and we define the set containing = to be this boundary.

Finally, suppose that x is contained in a plunge. The boundary of the plunge
has cardinality at most 6; we partition the boundary into sets of size 2 by pairing
Lo-vertices which are closest to a given vertex of JA.

The procedure described above (and also in Figure 23) defines a partition
of the Ly-vertices into sets {S;} of cardinality 2. It remains to investigate the
distance between (x) and ¥ (y) where {z,y} = S;.

We consider first the case that S; = {x,y}, and that x and y lie in different
sides of JA. This covers the cases when x and y are contained in the boundary
of a bite, a dip, or a plunge.

Now, ¢(x) € D7 (L) N pap, say. Suppose that ¥(y) € D71 (La) Np,.e (we
can arrange both of these by relabeling a, b and c if necessary). Preferred paths
are chosen to be vertical from depth L; to at least Ly +1 (see Definition 5.4). In
fact, because preferred paths travel as quickly as possible towards Li-horoballs,
they must be vertical from depth 2§ to at least Lo + 1.

Let z, be the point on p,_;, which is at depth L; and lies closest to ¢ (z), and
let z, be defined similarly in relation to ¥ (y).

Preferred paths are iLl-slim by Proposition 5.17. Thus, there is a point
W € Pqg,c U pp,. which is within iLl of z,.

Suppose first that w € p, .. Then, since preferred paths are vertical between
depths 2§ and Lo + 1, it is not difficult to see that d(zz,zy) < %Ll. Because
of the geometry of combinatorial horoballs, distance between points on vertical
paths strictly decreases with increasing depth. Thus, by depth 1%L1 in P, the
paths p, p and p, . must be within 1 of each other. It is now easy to see that
d(w(), v(y)) < 1.

Suppose then that w € py .. Then, arguing as above, there is a point w, €
D™YL1) NP Nppe so that d(zz, w,) < iLl.

Similarly, there is a point w’ € pa,, Upp,c Within Ly of z,. If w' € pa, then
we see that d(i¢(x),¥(y)) < 1, just as above. Therefore, suppose that w’ € py ¢,
in which case we have some w,, € D~(L1) N P Npyc so that d(z,,w,) < +L;.
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Note that the part of py . between w, and wy is o(wg,w,). We consider the
maximum depth o(w,,w,). First note that because of the choice of z and y,
it must be that p, . N P2 = (). Therefore, the maximum depth of o(w,,w,) is
less than Ly. If this depth is at most Lo — 2, then at depth Lo — 2 the preferred
paths pg s and p, . are at most 3 apart, which implies that at depth Ly they
are at most 1 apart, as required. Therefore, we are left with the case that the
maximum depth of o(w, w,) is exactly Ly —1. In this case, at depth Ly —2, the
preferred paths p,; and pp . are distance at most 1 apart, as are the preferred
paths pq . and pp .. Because o(ws,wy) has maximum depth Ly — 1, at depth
Ly — 2 the two vertices in py . are distance at most 2 apart. This implies that
the distance (at depth La — 2) between the vertices in p,p and p, . at depth
Ly — 2 is at most 4. This implies that d(v(x),¥(y)) < 1.

We are now left with the case that x and y are contained in the same
side of JA, so in the boundary of a nibble. Suppose that ¥(x), ¥ (y) € pa.p-
Define the points z;,z, € D7'(Li) N P N pgyp. There are points w,,w, €
D= (L1) N PN (pp,c Upa,c) so that d(zg, wy), d(zy, wy) < %Ll. Here there are
two cases to consider, depending on whether w, and w, are contained in the
same preferred path, or not. In any case, The preferred paths p, . and py,. do
not intersect PL2 (because we are considering a nibble). However, by Proposi-
tion 5.17, one of p, . or py . must intersect PLl2—il nontrivially.

There are a number of cases to consider, depending on the maximum depth in
P of pg,c and py.. We consider the most complicated, and leave the remainder
as exercises for the reader.

Suppose that w, € pa,c, Wy € Pp,c and that both p, . and p; . intersect pl2—1
nontrivially. Consider the points in p, . PN D71(Ly). There are two of these
points, w,, and u,, say. Similarly, let p, . N PN D71 (Ly) = {wy, uy}.

It is not difficult to see (using iLl—slim triangles and the properties of the
paths o(r, s)) that d(ug, u,) < 2 L.

Therefore, at depth Ly — 3, we have points z;, z;, € Pap, Wy, U}, € Pa,c and
wy,, U, € ppe so that a primed point is directly beneath its unprimed coun-
terpart. Now, d(z},,w,),d(u},uy,),d(wy, z;,) < 1. Also, the (Ly — 3)-distance

between w, and u!, is at most 4 (because the maximum depth of p, . in P is

/
Y

shows that the Ly — 3 distance between 2, and z; is at most 7. This implies
(because 7 < 23) that d(¢(z),9(y)) < 1, as required.
This completes the proof of Lemma 5.25. |

Ly — 1). Similarly, the L, — 3 distance between w! and uil is at most 4. This
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Definition 5.26: An element of the partition in Lemma 5.25 will be called a
pair.

Definition 5.27: We define a 1-complex Skel(¢) which we call the skeletal fill-
ing of 9. The vertex set of Skel(z)) is equal to A U (D o)~1(Ly). There are
three kinds of edges:

(1) The first kind come from the subdivision of A by the vertex set.

(2) If {z,y} are a pair of Lo-vertices, in the sense of Definition 5.26, and
¥(x) = ¥(y), then we connect x and y by an edge which we call a
ligament.

(3) If {z,y} are a pair of Ly-vertices so that 1(x) # ¥ (y), then we connect
x and y by an edge which we call a rib.

LEMMA 5.28: The identity map on OA extends to an embedding of Skel())
into A.

Remark 5.29: By Lemma 5.25, the map v also extends to a map
¥ Skel(y) — X UonX
which sends each ligament to a point and each rib to a single horizontal edge.

Definition 5.30: Suppose there are (possibly degenerate) subintervals o7 and o9
of sides of JA so that 1(o1) = 1(02), and suppose that these are chosen to
be maximal such intervals with endpoints in the vertex set of Skel(). Then
the minimal subcomplex of Skel(¢)) containing all edges with both endpoints
in o1 U oy is called a leg. A leg contains one or two distinguished ligaments,
joining the endpoints of o1 to the endpoints of .

We note that 1 collapses each leg to a subsegment of a preferred path.

LEMMA 5.31: Each leg of Skel(1)) contains exactly on corner of A. In particular,
Skel(y) has at most 3 legs.

Proof. Consider a corner v of 9A, and the two sides e; and es containing v. Let
z1 € e; and x2 € es be the endpoints of the ligament joining e; and es which
is furthest from v.

Let th(e1) = Pay and $(es) = Pae, 50 ¥(v) = a. Suppose that () =
(x3) € D7 (L2)NP. Then P € HypN'Hy oo By Axiom (A6) and the definition
of preferred paths those parts of p,p and p, . between a and ¥ (z1) = ¥ (z2) are
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identical. This implies that the segments between v and x; and v and x5, and
the ligaments joining them, form a leg.

If there is no ligament joining the edges e; and es then there is no leg inter-
secting both of these sides. |

Definition 5.32: Let T" be a graph and let e be an edge of I' which separates
T" into two components. We say I'y and I's; are obtained from I' by surgery
along e if there are edges e; in I'; and e in I's which can be identified to give
a graph isomorphic to I'.

Definition 5.33: Successive surgery along the distinguished ligaments of Skel(v)
yields a collection of at most 4 graphs, at most three of which come from legs,
and exactly one of which contains pieces of all three edges of dA. We call the
graph which contains pieces of all three edges of A the middle of Skel(¢)). *
(See Figure 24.)

Figure 24. A somewhat stylized picture of the image of a pre-
ferred triangle.

LEMMA 5.34: Let ¢v: O0A — X U Oy X be a preferred triangle, with edges
e1, ez, e, and suppose that 1(e1) = pa,p, ¥(€1) = pa,c and 1h(es) = pyc. Suppose
further that P is a horoball which is such that 1y (e;) N PY2 £ (). Then P € Ha
and either P € H, . or P € Hy .

4 In an earlier version of this paper, preferred triangles could have feet, as well as legs
and a middle. The improved construction in Section 4 does away with the need for feet.
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Proof. Follows from the fact that the image 1(9A) is a quasi-geodesic triangle
which is iLl—slim and that Lo — %Ll =3L1 — %Ll > L. [ |

Definition 5.35: Suppose that ¥: A — X Uy X is a preferred triangle, with
corners vy, v, v3 so that ¥ (v1) = a,¥(vy) = b and ¥(vs) = ¢. Let e; be the
edge of OA joining vy to ve. If =1 (PE2) # () and P € Hap N Ha,e then we
say that P is associated to v;. We define horoballs associated to vy and v3
analogously.

If P is a horoball so that ¢~1(P~L2) is nonempty and contained in a leg, I,
then we say that P is associated to [.

Remark 5.36: By Lemma 5.34, if P%2 N4)(e;) # 0, then P is contained in two
of Hap, Ha,c and Hy .

Therefore, for any horoball P, if »y~!(P%2) is nonempty, then P is associated
to some corner of A.

It could be that a horoball P as in Definition 5.35 is contained in all three
of Hap, Ha,c and Hp ¢, in which case P is associated to all three corners of JA.

However

LEMMA 5.37: There is at most one horoball associated to all three corners of

OA.

PROPOSITION 5.38: Let ¥: A — X U I X be a preferred triangle and let v
be a vertex of OA.

There is at most one horoball which is associated to v and is not also associ-
ated to a leg in Skel(v)).

Proof. Suppose that the horoballs A and B are associated to v.

Let a,b, c be the images of the vertices of OA, with a = ¥ (v). Then A, B €
Hap N Ha, and suppose that A < B in the order coming from Hg . We will
prove that A is associated to a leg in 0A.

The preferred paths p, , and p, . coincide at least until they reach the horoball
B and in particular, the intersections of these paths with A is identical. Since
one of Al2 N pa,p and Al N Pa,c is nonempty (since A is associated to v), both
of these sets are non-empty.

It is not difficult to see that ¢~ 1(AL2) is contained in a leg. n
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COROLLARY 5.39: Let ¢: OA — X Udn X be a preferred triangle. The total
number of ribs and ligaments in the feet and middle of Skel(v) is at most 6. In
particular, the number of ribs in Skel(v)) is at most 6.

Proof. Each Lo-vertex in Skel(1)) maps to a horoball associated to some corner
of OA. If w is an Lo-vertex in a foot or middle of Skel(y)) and P is the horoball
containing 1 (u), then P is not associated to a leg.

For each horoball, A, the set of Ly-vertices in Skel(z) which map to A2 has
cardinality at most 6, and at most 4 unless ¢»~1(AL2 Uey) is a plunge. Thus
there are 3 ribs or ligaments for a plunge, and at most 2 for other horoballs.

Lemma 5.37 implies that there is at most one plunge and Proposition 5.38
implies that there are at most 3 horoballs not associated to legs. The result
now follows easily. ]

COROLLARY 5.40: Let t¢p: 0A — X U0x X be a preferred triangle and let M
be the union of the feet and middles of Skel(y)). Then

M| < 15.

Proof. There are 3 vertices for the corners of OA.
Also, there are at most 6 ribs or ligaments in the feet and middle of Skel(v)),
and each of these contributes two vertices. [ |

We now proceed to decompose preferred triangles. A key feature of preferred
triangles is Proposition 5.44 below.

Definition 5.41 (Sub-pictures): Suppose that ¢¥: A — X Udx X is a preferred
triangle. Successive surgery along all of the ribs and ligaments of Skel(v) yields
a collection of graphs. We call these graphs sub-pictures.

The following result follows immediately from the fact that the depth function
D is continuous.

LEMMA 5.42: Suppose that Pic is a sub-picture of Skel(v)). Then either
»(Pic) € D~Y([0, La]) or ¥ (Pic) € D~1([Lz, 00)).

Definition 5.43 (Thick-thin decomposition of preferred triangles): Suppose that
¥ OA toX U O0xX is a preferred triangle, and that Pic is a sub-picture of

Skel(1)).
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If v)(Pic) € D1(]0, La]), then we call Pic a thick sub-picture. If ¢)(Pic) C
D~Y([Ls,00)) then we call Pic a thin sub-picture.

PROPOSITION 5.44: If ¢p: OA — X U OnX is a preferred triangle, and u
and v are vertices in the same thick sub-picture of Skel(vy)) then any geodesic
Y(¢(u), 1 (v)) joining (u) to 1 (v) does not penetrate any (Ls + Li)-horoball.

Proof. Let Pic be a thick sub-picture of Skel(y)). Then ¢ (Pic) C D~1([0, La]).
Furthermore, the image of Pic under v consists of subsegments of preferred
paths pu.p, Pa.c and pp, say, together with single edges from D~1(Ls), corre-
sponding to the images of ribs in Pic.

If pa» and pgp both intersect (Pic) nontrivially, then they either intersect
in 9(Pic) (in case their preimages are joined by a ligament) or else are joined
by an edge of length 1in D~1(Ls) (in case their preimages are joined by a rib).

Thus, any point in ¢ (Pic) lies within distance at most % from pa s NPa,cNDb,c-

Suppose pqp N (Pic) # 0. Let mq, be the point in p,, N ¢ (Pic) closest to
a, and let n,; be the point closest to b. Define points mg, ¢, g, Mp,c and np ¢
analogously. Not all of these points need be defined, if the intersection of some
preferred path with ¢ (Pic) is empty. Also, it is certainly possible for some of
these points to be the same, if they lie in the image of a ligament, or if they are
the image of a corner of JA.

Suppose that mgp = pap(t). Let g = v(a,b)(f(t)), where f is the function
from Proposition 5.12.

Use the function f to define points 7.3, Mq,c, €tc.

Note that d(mgp, Map) < K +126+9, and similarly for the other points and
their hatted counterparts.

The points mg p, Na b, - - - are partitioned into some of the pairs defined earlier
in this section, and, in particular, each pair consists of one or two points which
are distance at most 1 apart.

Thus, the geodesics between the points 1, 4, Mg p, - - ., consisting of the sub-
segments of y(a, ), v(a,c),v(b, ¢), and paths joining the points whose un-hatted
counterparts correspond to a ‘pair’.

Therefore, depending on whether there are two or three preferred paths which
intersect Pic nontrivially, the points 745, g5, etc. form either a hexagon or
a quadrilateral. If it is a hexagon, then three of the sides have length at most
2(3K + 216 + 14) + 1, and if it is a quadrilateral two of the sides of length
at most 2(3K + 216 + 14) 4+ 1. Call the sides [1iqp, g 5] €tc., the ‘long’ sides
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of this polygon. Any point on a long side of this polygon is distance at most
2(3K + 210 + 14) + 1 4 36 from one of the other long sides.

Now consider any vertices u,v € Pic. As already noted, there are points v/, v’
so that «’' and v’ are contained in preferred paths and d(u,u’),d(v,v") < 1/2.

By Proposition 5.17 there are points u;,v; on different preferred paths to v’
and v’ respectively so that d(u',u1),d(v',v1) < § + 1. Since there are only
three preferred paths, at least two of u’, w1, v, v; must lie on the same preferred
path. Since v’ and u; lie on different preferred paths, as do v’ and v, one of
the two points lies within 4’ of v’ and one within ¢’ of v/. Let this pair of points
on the same preferred path be @ and v, so that d(w, '), d(v,v’) < ¢'. That part
of the preferred path which lies between @ and v lies in a thick sub-picture, and
so does not penetrate any (Lg 4 2)-horoball. Let p be this part of the preferred
path.

By Proposition 5.12, there are points %,? on a long side of the polygon de-
scribed above, so that d(w,a),d(u,4) < 3K 4 216 + 14. The geodesic be-
tween 4 and ¢ (which lies on a long side of the polygon) lies at Hausdorff
distance at most 3K + 216 + 14 from u, and therefore does not penetrate any
(L2 + (3K + 216 + 14) + 2)-horoball.

Now, consider the geodesic quadrilateral formed by w, v, 4, 9. We have

1
d(u, @) < d(u,u') +d(u',a) +d(@,a) <8 + (3K + 216 + 14) + 15

and, similarly, d(v,9) < ¢ + (3K + 216 + 14) + 11.
Therefore, any point on the geodesic between u and v lies in at most
8"+ (3K +216 + 14) + 15 + 26 of some point on the geodesic between @ and ©.
This implies that the geodesic between u and v does not penetrate any
(Lg+2(3K+215+14)+25+3%)—h0r0ball. Since L2+2(3K+216+14)+25+3% <
Lo + Ly, the proof is finished. |

Remark (about torsion) 5.45: In the context of the “quantum” preferred paths,
when G is not torsion-free, not all choices of triples of preferred paths will have
the controlled properties of preferred triangles in this section. In applications,
it is possible to make consistent choices. We will say more about this in Part 2.

6. A homological bicombing

In this section we describe how the results from previous sections in this paper
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may be combined with results of Mineyev from [29] to construct a quasi-geodesic
homological bicombing of X U dx X (in the sense of Definitions 2.35 and 2.36).

6.1. MINEYEV’S BICOMBING. In this subsection, we briefly recall a construction
of Mineyev from [29]. We need a slightly more general statement than appears
in [29], and we explain how Mineyev’s proof implies Theorem 6.2 below.

Suppose that I" is a locally finite graph which is §-hyperbolic for some integer
d>1.

Remark 6.1: In his construction, Mineyev further assumes that I' has bounded
valence. This is important for the area bounds, but not for making the defini-

tions.

Suppose that the group G acts freely on I'. Let v be a G-equivariant geodesic
bicombing on I' (see Definition 2.31). Let P be the homological bicombing
induced by 7 (see Remark 2.34).

For each vertex a in I', define

pro : 7O - 1O

as follows:
e pry(a) = a; and
o if b # a, then pry(b) = ~(a,b)(r), where r is the largest (integral)
multiple of 106 which is strictly less than d(a,b).

For vertices a,b in I, the flower at b with respect to a is the set
Fl(a,b) = S(a,d(a,b)) N B(b,8) c T,

Now, for each pair of vertices a,b € I' define a 0-chain f(a,b) in I" inductively
on the distance d(a,b) as follows:
e if d(a,b) <100 then f(a,b) = b;
o if d(a,b) > 10§ and d(a,b) is not an integral multiple of 10§ then

f(a,b) = f(a,pra(b)); and
e if d(a,b) > 104 and d(a,b) is an integral multiple of 104 then

f(a,b) = #Flab > flapra(

z€Fl(a,b)
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For each vertex a € I'(®)| define a O-chain, star(a) by

1
star(a) = ————= Z x.
#B(a’ 76) z€B(a,79)
By linearity, star(a) is defined for any 0O-chain a.
Now define, for a,b e I'0),

?(‘L b) = Star(f(a, b))

We now define a homological bicombing Q' on I". First note that, by linearity,
P, » makes sense when a is any 0-chain. The 1-chain Q;,b is defined inductively
on d(a,b), as follows: if d(a,b) < 104, then Q;yb = P, 5. Suppose now that
d(a,b) > 100. By [29, Proposition 7(2)]

Supp(f(av b)) c B(Pa,b(]-oé)v 86)

Note that Mineyev’s proof of this does not use the bounded valence assumption.

Therefore, for each z € supp(f(b,a)) we have d(a, z) < d(a,b), so Qy, , is defined

by induction. Define Q; F(ba) by linearity over the second variable and define

Iy >
Qa,b - Qq)?(b,a) + Pf(b}a),b’
Finally, we define

1
5(@:1717 - Qg,a)a

Qap =
so that @ is anti-symmetric.

Mineyev proves that when I' has bounded valence, the bicombing ) has
bounded area, in the sense of Theorem 6.2 below. When I" does not have
bounded valence, these area bounds break down completely. However, we are
only going to use the bicombing from [29] on a subset of X of uniformly bounded
depth, and on such a subspace the valence is uniformly bounded, and Mineyev’s
techniques apply.

The proof of the area bound for a given triangle occurs entirely in the 604-
neighborhood of the union of the three geodesic sides. Moreover, if we have a
bound on the valence in some part of a graph, then we can calculate a bound
on the number of vertices in any given ball which lies entirely within the chosen
part. The proof from [29] now applies directly to prove the following theorem.

THEOREM 6.2 (Mineyev): There is a function T = T'(d,v) so that: For any
finite valence d-hyperbolic graph T', and group G acting freely on I, there is a
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(186 )-quasi-geodesic G-equivariant antisymmetric homological bicombing @) so
that

|Qab + ch + Qca‘l S T(57 ’l))

whenever a, b, ¢ are vertices of I' spanning a geodesic triangle T, so that every
vertex in the 600-neighborhood of Ty, has valence less than v.

Theorem 6.2 is a key ingredient in the construction in this section. The
other key ingredients are the construction of preferred paths and the analysis
of preferred triangles from Section 5

6.2. THE BICOMBING ¢. In the remainder of this section we define our homo-
logical bicombing ¢ of (X U 01 X) X (X U 0y X), which uses preferred paths
and Mineyev’s bicombing @ from Theorem 6.2. (See Definition 2.35 for the
definition of homological bicombing which allows some points to be ideal.)

Suppose that a,b € X UOnX. Let pqp be the preferred path between a and
b.

Decompose p, into subintervals, oriented consistently with p,;, which lie
either entirely within D=*([0, Lo]) or entirely within D~!([L2, 00)), and so that
the endpoints of these subintervals lie in {a,b} U D71(Ls).

By the way that preferred paths were defined, there is a unique way of per-
forming this decomposition.

Suppose that p is a subinterval in the decomposition of p,  so that p lies in
D~1([0, Ls]), and let = and y be the endpoints of y.

LEMMA 6.3: The geodesic between x and y does not intersect any

(Ly + 2(3K + 216 + 14) + 25)-horoball.

Proof. By Proposition 5.12, there exist 2,y € y(a,b) so that d(x,z’),d(y,y") <
3K + 216 + 14, and so that the Hausdorff distance between p,plz,y] and
~v(a,b)[z',y'] is at most 3K + 216 + 14. Thus, y(a,b)[z’,y'] does not penetrate
any (L2 + (3K + 216 + 14))-horoball.

The geodesic quadrilateral with vertices x,z’,y,y’ has two sides of length
at most 3K + 216 + 14. Therefore, the geodesic between x and y lies in a
(3K +216+14)+24 neighborhood of v(a, b)[z’,3'], and hence does not penetrate
any (Lo + 2(3K + 216 + 14) 4 26)-horoball, as required. ]
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Definition 6.4 (Definition of ¢): Suppose that a,b € X U9y X are distinct. Let
Da,p be the preferred path between a and b, and let p, ; be the induced 1-chain.

The decomposition of p, ; described above induces a decomposition of p, 3. Let

p be an element of the decomposition of p, for which supp(u) C D70, Lo].

Let Op = py — p—.
Taking the sum over all such p we define

Qo = Pap — O (Qu—, p1y) — ).

m

Because Op = 0Q(p—, p4) = pi — p—, we have Op,p = 0¢q,5. We claim that

q is a homological bicombing on X U dx X in the sense of Definition 2.35 and
that furthermore it is 600052-quasi-geodesic in the sense of Definition 2.36. It
also has nice properties analogous to those in Theorem 6.2 above. See Theorem
6.10 below for the precise statements about the bicombing q.

PROPOSITION 6.5: For any a,b € X U0y X, supp(qa) lies in a (K + 258 + 9)—
neighborhood of any geodesic between a and b.

Proof. By Corollary 5.13, pg lies in a (K + 76 4+ 9)-neighborhood of y(a, b).
By construction and Theorem 6.2, supp(gq,.p) lies in an 189-neighborhood of

Pa,b- L]

Since K +256+9 < 600052, Proposition 6.5 proves the first of the two required
statements for ¢ to be 600062-quasi-geodesic. We now prove the remaining

requirement.

PROPOSITION 6.6: ¢ is a 600082-quasi-geodesic homological bicombing on
XUonX.

Proof. By Proposition 6.5, it remains to prove statement (2) of Definition 2.36.
Let a,b € X(© be distinct. By Theorem 6.2 and the definition of ¢, we have

lq(a,b)|1 < 180]pasli.

By Corollary 5.14, the length of p,; is at most 2d(a,b) + 20K + 120§ + 72 <
3256d(a,b). W

Remark 6.7: It is also possible to prove a suitable refinement of statement (2)
as alluded to in Remark 2.37.
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6.3. BOUNDED THICK AREA. The main result of Section 6 is Theorem 6.10.

Definition 6.8: Suppose a, b, c € X U9y X. We define a 1-cycle cqpe as follows:
Let ¢: A — X U 0xX be the preferred triangle associated to the triple
(a,b,c). Associated to ¢ is the graph Skel(¢) (see Definition 5.27), which has
associated thick sub-pictures (see Definition 5.43). Let Pic be a thick sub-
picture of Skel(¢). The vertices of Pic inherit a circular order (vy,...,v,) from
the order (a,b, c).
Define

CPic = Z Q(B(v:), d(vis1))-

i€Z/m
Finally, define
Cabe = Z CPic,
Pic

where the sum is over all thick sub-pictures of Skel(¢).

Observation 6.9: If Pic is a thick sub-picture lying in a leg of Skel(¢), then
CPic — 0.

The following is a key theorem for our proof of Theorem 11.11, one of the
major steps in proving Theorem 7.2:

THEOREM 6.10: There exists a constant T, depending only on X, so that for
all a,b,c € X UOu X there is a 1-cycle cqpe, as described in Definition 6.8 above
then

‘Cabc‘l S T1~
Also,
Supp(Q(av b) + q(ba C) + Q(C, a) - Cabc) C Dil[LQa OO)

Proof. We have already noted that the thick sub-pictures which lie inside a leg
do not contribute anything to c4p.. Thus we may concentrate on thick sub-
pictures lying in the feet or middle of Skel(¢). By Corollary 5.40, there are at
most 15 vertices in total in all such sub-pictures. Therefore, we can triangulate
all of these sub-pictures with at most 13 triangles, whose vertices all appear as
a vertex in one of the thick sub-pictures.

Let u and v be such vertices. By Proposition 5.44, the geodesic between u
and v does not intersect any (Lo + L1)-horoball.
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Let v be the maximum valence of any vertex in D~1[0, Ly + Ly + 184], and
let T'(6,v) be as in Theorem 6.2. Define T; = 13T'(4, v).

We can express cgpe as the sum of at most 13 1-chains of the form
Quyus + Quo,ug + Qug.uy » Where up, up and us are the images under (b of vertices
in thick sub-pictures of Skel(¢) which lie in the feet or middle.

The result now follows from Theorem 6.2. |

The following is immediate from Theorem 6.10 and Theorem 3.25.

COROLLARY 6.11: For all a,b,c € X Udy X there exists a 2-chain wqp. so that
(1) Owape = Cape; and
(2) |wabe|t < MxTh,

where Mx is the constant for the linear homological isoperimetric function for
X.

Remark (about torsion) 6.12: In the presence of torsion, the bicombing ¢, and
the 2-chains wgpe, can be defined without much difficulty using “averaged” pre-
ferred paths, and the ideas already contained in this section.

Part 2. Dehn filling in relatively hyperbolic groups
7. Dehn filling in groups

In Part 2 of this paper, we provide an application of the constructions from
Part 1.

Definition 7.1: Let G be a group, and P a subgroup. Suppose that G is gener-
ated by S and P is generated by PN S. If K < P is a normal subgroup of P,
then we define

Kl|lp= inf k
IKlp kef(n\{u' [Pas,

where |k|pns is the distance from k to the identity in the Cayley graph
T'(P,PNS). By convention [{1}|p = oco.

In the special case that P is free abelian and K the cyclic group generated
by k € K, |K|p is just the length of x in P.
The main result of Part 2 is the following theorem.
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THEOREM 7.2: Let G be a torsion-free group, which is hyperbolic relative to a
collection P = {P,...,P,} of finitely generated subgroups. Suppose that S is
a generating set for G so that for each 1 <i <n we have P; = (P;N S).
There exists a constant B depending only on (G, P) so that for any collection
{K;}"_, of subgroups satisfying
o K; <PF;; and
e |Ki|lp, > B,

then the following hold, where K is the normal closure in G of K1 U --- U K,,.

(1) The map P;/K; “ G/K given by pK; — pK is injective for each i.
(2) G/K is hyperbolic relative to the collection Q={1;(P;/K;): 1<i<n}.

In fact, much more than this is true. For example, for i # j we have
vi(Pi/Kq) Nei(Pi/K;) = {1},

(see Corollary 9.4) and each (;(P;/K;) is malnormal in G/K (see Corollary
9.5). Also, if G is non-elementarily hyperbolic relative to {P;}, then G/K is
non-elementarily hyperbolic relative to {¢;(P;/K;)} (see Theorem 11.12).

The remainder of the paper is devoted to the proof of Theorem 7.2, and the
subsidiary assertions mentioned above.

Theorem 7.2 clearly holds if n = 1 and G = P;, so we henceforth assume
(without mention) that this is not the case.

8. Equations involving parabolics and skeletal fillings of surfaces

In this section we suppose that G is hyperbolic relative to P = {Py,..., P,},
and that X = X (G, P, S, R) is the cusped space associated to some compatible
set of generators S, and some collection of relators R, as described in Section
3. Finally H < G is an arbitrary normal subgroup of G.

In order to use the geometry of X to study the quotients of G, we will need
to turn equations in G/H or (represented as maps of compact planar surfaces
into X/H) into “pleated surfaces” in X/H. Exactly what this means depends
on the context, and will become clear as we proceed.

8.1. LIFTING AND STRAIGHTENING. Let I'y = I'(G,S)/H C X/H. Notice
that T'y is a Cayley graph for G/H. We first show how to extend maps of
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compact surfaces with boundary components in I'y; to proper maps of non-
compact surfaces. We then say what we mean by “lifting and straightening”
such proper maps.

Let ¥ be a compact planar surface, and let

¢: ¥ — X/H
be a cellular map so that ¢|sps C 'y.

Definition 8.1: If P € P, let OpX be the union of those boundary components
¢ so that ¢|, lifts to an arc in X which lies in a single left coset of P. Let

opY = |J 0rx.
PeP
be the union of those boundary components of ¥, each of which is sent into the
image of a single 0-horoball of X (see Definition 3.21). We refer to dp as the
parabolic boundary of X.

Definition 8.2: Let
Y= Ugpx 0p% X [0, 00)

be the surface obtained from X by attaching a half-open annulus to each com-
ponent of dpY. We extend ¢ to a proper map

b: ¥ — X/H

as follows: Let ¢ 2 S! be a component of dpX. The map ¢ sends ¢ x {0} to a
loop 7o which is contained in T'(P, P U .S)/P for some P € P. This loop lifts to
some path g in X, each edge of which is the top edge of some vertical square.
Let 1 be the loop which is the projection of the path obtained by traversing
the bottom edges of those squares, and define (Z>|CX[071] to be a homotopy across
the images of those squares in X/G so that gf)|cx{1} = ~1. Similarly, define
@lexk,k+1) for each k > 1 so that D(¢(c x {t})) =t for each ¢t > 0.

A peripheral path in X/H is a path in the 1-skeleton which lies in the
image of the Cayley graph of some P; € P.

Definition 8.3: Let ¥ be a compact planar surface, and let ¢: ¥ — X/H be
as above. A reducing arc for ¢ is an essential, properly embedded interval
o: I — ¥ so that 0(0I) C 9pX for some P € P and ¢ o ¢ is homotopic rel
endpoints to a peripheral path.
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Definition 8.4: Analogously we may define reducing arcs for proper maps into
X/G: Suppose that E is obtained from a compact planar surface by removing
finitely many points. Let f : = — X/H be a proper map, and suppose o : R — =
is an essential proper arc. We say that o is a reducing arc if f o o is properly
homotopic into D™1[L, c0) for some (and hence for any) L > 0.

LEMMA 8.5: The map ¢: ¥ — X/H has a reducing arc if and only if
$: ¥ — X/H has a reducing arc.

LEMMA 8.6: Let = be a surface of finite type (possibly with boundary), and
let T be a triangulation of £ (partially ideal if appropriate). Let : = — X/H
be a proper map satisfying: (i) v has no reducing arcs; and (ii) if e is an edge
of T which limits on a puncture p of = then there is a neighborhood U of p so
that 1|enu Is vertical.

Then there is a proper homotopy from 1 to a map

Yr: E— X/H
so that if e is any edge of T, then 1|, lifts to a preferred path in X.

Proof. Let e be an edge of 7. It suffices to show that |, is homotopic to a
preferred path, and that this homotopy is level-preserving near the ends of e.

Choose a lift zZJN|e of Y|, to X. The map 1;\; extends to a map from I to
X UOxX. Let a be the image of 0 and b the image of 1. Since e is not a
reducing arc, a # b and there is a preferred path p,; between these points.
Consider p,,; as a map from e to X.

Suppose that a is ideal. Then both ’(ZJT@ and p,p are vertical on some initial
segment, so we may reparametrize so that D o 1;|; and D o p,; agree on this
initial segment. Therefore, there is an obvious horizontal homotopy from %
t0 pq,p On this initial segment. We consider the projection of this homotopy to
X/H.

In case b is ideal, we may similarly perform a homotopy on a terminal sub-
segment of e.

We are now left to deal with a compact loop, formed by the paths {bTE and
Pap (or the sub-paths with which we have not yet dealt). The space X is
simply-connected. |

Remark 8.7: Suppose that ¢: ¥ — X/H is as at the beginning of this subsec-
tion. The surface ¥ and the map ¢: ¥ — X/H satisfy condition (i) of the
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hypothesis of Lemma 8.6.

Remark (about torsion) 8.8: In the presence of torsion it is not, in general,
possible to find a map ¥7 as in Lemma 8.6 so that each triangle is mapped
to something which is combinatorially controlled the way that preferred trian-
gles are. Having no reducing arcs is not sufficient; an additional hypothesis is
required.

8.2. THE SKELETON OF A MAP. In this subsection, we define the skeleton of
the map of a surface into X/H, assuming the surface has been triangulated by
edges which are sent to preferred paths.

Definition 8.9: Suppose that = is a surface with a (possibly partially ideal) tri-
angulation 7, and that §: = — X/H sends each edge of 7 to a non-degenerate
path which lifts to a preferred path between points in X U9x X . Further assume
that 6 sends no vertex of 7 to a point in an Ly-horoball. Let = be the compact
surface obtained from = by filling in the punctures; 7 induces a triangulation
T of Z. Then 6 extends to a map

0: E— X/HU (0yX)/H.

If A is a triangle of 7, then |pa lifts to a preferred triangle in X (Definition
5.19). The skeletal filling Skelf|sa can then be inscribed on = (Lemma 5.28).
The skeleton of 6, Skeld, is the 1-complex in Z which is the union of the
Skelf|pa for A € T.

Remark 8.10: A typical application of the above definition and the lemmas
below is the situation where ¢: ¥ — X/H is as at the beginning of the section
(with no reducing arcs). In this situation, we will take Z to be ¥ and  to be
o7

Remark 8.11: Let : E — X/H and T be as described in Definition 8.9, and
write Z(1) for the union of the edges of 7. By Remark 5.29, we can extend
f)=a) to a map

0: Skeld — X/H U (0 X)/H

which collapses each ligament to a point, and sends each rib to a horizontal

edge. Observe that D(6(z)) = Lo for any vertex v of Skelf not coming from a
vertex of 7.
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Definition 8.12: Let 8: = — X/H and 7 be as described in Definition 8.9, and
let §: Skeld — X/H U (81 X)/H be as in Remark 8.11. Let D: Skeld — [0, oc]
be as follows:

00 if x is a vertex coming from a puncture.

D(f(z)) otherwise.

Let v be a vertex of Skelf coming from a puncture of Z. Let E(v) C = be
the smallest closed disk containing the component of 5_1[L2,oo] which also
contains v. The link of v, Lk(v), is the boundary of E(v).

Remark 8.13: Note that Lk(v) is contained in the skeleton of §. If = is a
punctured sphere, then Lk(v) is a circle made up entirely of ribs and ligaments;
otherwise it may contain parts of edges of 7. Also notice that E(v) contains no

vertex of 7 other than v. In Figure 30, one can see an example showing both
kinds of links.

The next two lemmas follow easily from the fact that 6 restricted to a triangle
of T, lifts to a preferred triangle in X, and that both X and Lo-horoballs in X
are simply connected.

LEMMA 8.14: Let : E — X/H and T be as described in Definition 8.9, and
let §: Skeld — X/HU(0xX)/H be as in Remark 8.11. Let ¢: Skeld — = be an
inclusion which is the identity on edges in T. The map @ is properly homotopic
to a map 8’ so that 6’ o1 = 6.

LEMMA 8.15: Let 0: 2 — X/H and T be as described in Definition 8.9, and
let 6: Skel — X/H U (8 X)/H be as in Remark 8.11. Let 0: S' — = be a
loop surrounding a puncture x, so that 0 o o(S') Iies entirely in the component
of (0 o D)7 ![La, 00) surrounding x. Let v: S* — Lk(z) be a homeomorphism.
Then 6 o o is homotopic to 6 o y inside D™[Ls, o).

9. Punctured spheres and disks

In this section we investigate relations in G/K amongst the images of the par-
abolic elements of G. In particular, we prove assertion (1) of Theorem 7.2. We
also prove Theorem 9.3.

For this section, we make the following standing assumptions:
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(1) G is a finitely generated, torsion-free group, which is hyperbolic relative
to a collection P = {P,..., P,} of finitely generated subgroups;

(2) S is a finite compatible generating set for G with respect to P (in the
sense of Definition 2.15);

(3) X(G,P,S) is é-hyperbolic.

9.1. FROM PARABOLIC EQUATIONS TO SURFACES AND PUNCTURED SPHERES.
In this paragraph, we explain how any equation amongst parabolic words (and
their conjugates) may be turned into a map of a compact planar surface with
boundary into X/G; we can then extend this to a proper map of a punctured
sphere into X/G using Definition 8.2.

Suppose that in G there is an equality of the form:

m
(1) 1=[]gpigi ",
=1

where, for each i, p; € P, and g; € G. Choosing words for each g; and words in
S N P, for each p;, we find a map qz;: Y — X of a disk, sending the boundary
to a loop representing the equation.

Projection gives a map 7o q~5: pOJ X/G.

Let ¥ be the surface obtained from the disk ¥ by identifying those parts of
the boundary corresponding to the g; in pairs (Figure 25).

gikigy "

gikigy P g2kagy !

Figure 25. Identifying those parts of the disk 3 labelled by the
conjugating elements yields a compact planar surface which
maps into X/G.
The map = 0g2> factors through the quotient map from Y to X. Let
¢: ¥ — X/G be the resulting map.
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The m boundary components of ¥ are sent by ¢ to peripheral loops in X/G
whose labels are the words chosen for the p; above.

Conversely, given a compact planar surface with all but (possibly) one bound-
ary component labelled by elements of the K;, we can reconstruct an equality
like (1) for the word representing the other boundary component, by choosing
the g; via some paths through the surface.

9.2. THE GROUPS P;/K; INJECT INTO G/K.

THEOREM 9.1: There is a constant R = R(5) < 12-23099 5o that the following
holds: If {K1,...,K,} are so that K; < P; and |K;|p, > R then the natural
map t;: P;/K; — G/K is an injection, where K is the normal closure in G of
KiU---UK,.

Proof. (ct. [26, Proof of Theorem 3.1])

We will show that if, for some i, the map ¢; is not injective, then |K;|p, must
be small for some .

Let @ € P;\ K; be an element of K. Thus there is some equation

m
(2) a=[]gkig;
j=1
for some finite sequence of g; € G and k; € K;,. We say that such an equation

represents the death of a in G/K. We may suppose that the product in
(2) is minimal in the following sense: If o/ is any element of | J; P; \ |, K;, and

grkrg !

Q\
I
—1=

1

%
Il

for some collection of g, € G and k, € K; _, then m’ > m. (In other words, the
expression in (2) is minimal in length not only for «, but over all such equations
with the left hand side an element of | J; P; \ U, K;.)

The equality (2) is realized by a map ¢: ¥ — X /G, as in Subsection 9.1.

CrLAaM 9.2: The map ¢ has no reducing arcs.

Proof. Let ¢ be a reducing arc. Each of the boundary components of ¥ has
a corresponding word, and thus a corresponding base point (the starting point
of this word). We may assume that o starts and finishes at one of these base
points. The path o determines some element p of G. Because ¢ is homotopic to
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a peripheral path, p is contained in some Pj. We suppose ¢ has been homotoped
so that ¢ o o is a peripheral path.
There are five cases to consider, depending on the endpoints of o.

CASE 1: Suppose that the endpoints of o are on different boundary components,
neither of which corresponds to a. Cutting along o yields a new surface ¥’ with
fewer boundary components than ¥ (see Figure 26); two have been removed,

Figure 26. Reducing the number of boundary components la-
belled with elements of K.

and the new one is sent to a word representing k;pk;p~! for some i,j. This
contradicts the minimality assumption.

CASE 2: Suppose next that the initial point of o lies on the boundary com-
ponent corresponding to «, and that the terminal point lies on the boundary
component corresponding to k; for some i. Cutting along o again yields a sur-
face ¥’ with one fewer boundary component than Y. The boundary components
corresponding to a and k; have been removed. The new boundary component
has label o’ = apk;p~!. Since K; < P;, and o ¢ K;, we also have o’ ¢ K;. This
again contradicts the minimality of equation (2).

CASE 3: Suppose that both endpoints of ¢ lie on the boundary component
corresponding to «. Cutting ¥ along o yields two compact planar surfaces,
each with fewer boundary components than X. One of them represents the
death of p in G/K, whilst the other represents the death of pc.
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In case p ¢ K;, the equation for p contradicts minimality. Thus we may
suppose that p € K;, in which case pa ¢ K;, and again we get a contradiction
to minimality.

CASE 4: Finally, suppose that ¢ is a loop whose endpoints are on the boundary
component corresponding to k; (as in Figure 27). Cutting along o yields a pair

Figure 27. Case 4 of Claim 9.2.

of surfaces, both of which have fewer boundary components than . If p & K,
then the surface ¥’ not containing « corresponds to an equation representing
the death of p or pk; (depending on whether k; is contained in ¥’). On the other
hand, if p € Kj,, then we can replace the surface not containing a by a single
puncture, to yield a surface ¥” with fewer punctures than ¥, representing the
death of a.

In either case, this contradicts the minimality of m.

This proves Claim 9.2 |
As in Section 8.1, let ¥ = X U J% x [0, 00), and let
¢: ¥ — X/K

be the extension from Definition 8.2.
We now choose an ideal triangulation 7 of the punctured sphere ¥. As ¥ is
an m + 1-times punctured sphere, 7 contains 2m — 2 triangles. Let

b1 X — X/K
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be the map from Lemma 8.6, which sends each edge of 7 to a preferred path,
and let )

br: Skel(dpr) — X/GU (01 X)/G,
be as in Remark 8.11.

If T € T, then ¢|sr lifts to a preferred triangle qu\;: 0T — X. Let R(T) be
the number of ribs in Skel((g;), and note that this number does not depend on
the lift chosen. Corollary 5.39 implies that R(T") < 6.

Let

A¢) = 3 R(D).
TeT
Corollary 5.39 immediately implies

(3) A(0) < 6(2m — 2) < 12m.

_ Let x be one of the punctures of ¥ not corresponding to a. By Lemma 8.15,
$|Lk(w) is a loop at the Lo-level which, considering the Lo-level to be the image
of a Cayley graph for P;, represents an element k of K.
It follows that Lk(z) must contain at least 27 L2|k|p, ribs.
Thus
A(@) = 27" (min |,

P ) m.
Therefore, by (3),
A(9)

min |K; |p, <2f2°—"2 <12.2%2
s s m

9.3. ON THE STRUCTURE OF THE QUOTIENTS G/K. The theme in this subsec-
tion is that, by choosing large enough algebraic slope lengths, we can preserve
much of the structure of G in its quotients. See [20] for more results along these

lines.

THEOREM 9.3: Suppose G is torsion-free and that |K;|p, > 12 - 252 for each i.
Let P and P’ be conjugate into P and suppose that whenever P9 = P’ then
g &€ K. Then the images of P and P’ in G/K intersect trivially.

Proof. Suppose that P is conjugate to P; € P, and let Kp be the conjugate of
K; in P. Define Kp/ similarly. If the theorem is false, then there is an equation
in G of the form

m

(4) q=q [[oikigi".
=1
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where g € P\ Kp and ¢’ € P/~ Kp/. Suppose we have chosen such an equation
with m minimal over all such equations (over all choices of P and P’).

This gives rise to a map ¢ of a compact planar surface with m + 2 boundary
components into X/G. Once again, we claim that this map has no reducing
arcs.

Figure 28. This kind of reducing arc gives rise to at least one

new equation of type (4), if p € Kj,.

Let o be a reducing arc which is a peripheral arc, and let p be the correspond-
ing element of GG, contained in K, say. Most of the cases are entirely analogous
to those in the proof of Theorem 9.1; they all lead to a contradiction to min-
imality, or to injectivity. We deal with the most interesting case, when o is a
loop whose endpoints lie on a puncture corresponding to some k;, and so that
cutting along o separates the puncture corresponding to ¢ from the puncture
corresponding to ¢’ (see Figure 28).

By Theorem 9.1, ¢ and ¢’ are nontrivial in G/K. Therefore, p ¢ K;. Now,
the hypothesis of the theorem implies that it cannot be that there are k, k' € K
so that P = PF and P’ = PF. Therefore, one of the two diagrams obtained by
cutting along o yields a contradiction to the minimality of m. This, and the
omitted cases, show that there are no reducing arcs.

We now proceed as in the proof of Theorem 9.1. The only difference is that
we now have 2m triangles, rather than 2m — 2. However, it is still the case that
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Skel(¢7) has at most 12m ribs, and therefore
min |K; [p, <12-2"2,
as required. |
COROLLARY 9.4: Under the hypotheses of Theorem 9.3, if i # j then
vi(Pi/Ki) N (P K) = {1}

COROLLARY 9.5: Under the hypotheses of Theorem 9.3, 1;(P;/K;) is malnormal
in G/K, for each i.

PROPOSITION 9.6: Suppose that G is torsion-free and that |K;|p, > 12252 for
each i. Suppose that g € G ~\ {1} is such that there exists x € X so that the
preferred path p 4. lies entirely within D=1([0, Ly — 1]). Then g € K.

Proof. As usual, we suppose that the theorem is false, build a surface in X/K,
and use its geometry to derive a contradiction.
If g € K then there is an equality in G of the form

(5) l=g! Hgikigi_la
i=1

where k; € K, and g; € G. We choose such an expression for g which minimizes
m. Since g # 1 in G, we have m > 1.

Choosing words for each g;, each k; and g, the expression for g in (5) gives
a loop in X, beginning at 1. In turn, this induces a map $: Y — X of a
disk, as described in Subsection 9.1. Also as in Subsection 9.1, we may glue
) along parts of the boundary corresponding to the g;, to obtain a compact
planar surface, X, together with a map ¢': ¥ — X/K. The surface 3 has one
distinguished boundary component which is labelled by a word representing g,
and we call this component the g-boundary of .

We claim that there are no reducing arcs for ¢ whose endpoints do not lie on
the g-boundary. This follows as before: Any such reducing arc either contradicts
Theorem 9.1 or else the minimality of m.

Let £ be a simple path in X from 1 to x, and consider the loop in X which
is the concatenation § - py 4z - 1t - 1, where p is the path g§ traversed backwards,
and 7 is a lift to X of the image under ¢’ of the g-boundary of 3.

This loop may be filled with a disk in X, which projects to an annulus in
X/K, which has one boundary component the image of the g-boundary of X.
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Homotoping ¢ over the annulus gives a new map ¢: ¥ — X which maps the
g-boundary to the image of the preferred path p, 4., in X/K, see Figure 29.

T gx

Figure 29. The surface 3.

We now define a surface ¥ almost as in Definition 8.2 by attaching a half-open
annulus to each component of 0% except for the g-boundary. This gives a map

$: ¥ — X/K.

The g-boundary of ¥ is defined in the obvious way.

Choose a (partially ideal) triangulation 7 of ¥ which has one vertex which
is the preimage of xz, and all other vertices ideal, and one edge the g-boundary
of .

Homotope ¢ to

¢r: ¥ — X/K.

as in Lemma 8.6.
Because no edge in 7 is a reducing arc for ¢z, the image of each triangle
T € T lifts to a preferred triangle Typ. in X. Therefore, we can define the map

b7 Skel(dpr) — X/G U (91 X)/G,

as in Remark 8.11.
We now proceed as in the proof of Theorem 9.1. By Euler characteristic,
there are 2m — 1 triangles. Therefore, Skel((ﬁq—) has less than 12m ribs.
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Because p; 4., lies entirely within D~1([0, Ly — 1]), none of the ribs intersect
the g-boundary of Skel(¢7) (where the g-boundary of Skel(¢7) is defined in the
obvious way). By Lemma 8.15 there must be at least

Insin |Kis |Pis m,

ribs in Skel(¢7). Thus we have

min [K; |p, <1222,
. k
which is the required contradiction. |

This proposition has the following corollary:

COROLLARY 9.7: Let F' C G be a finite set. Then there is a constant C = C(F)
so that if each |K;

p, > C, then the quotient map G — G/K Is injective on F'.

Proof. We prove the equivalent statement that there exists some C’ = C'(F)
so that G — G/K sends no element of F' \ {1} to 1. (To see the equivalence
notice that C(F) < C'((FU F~1)2).))

Without loss of generality, we may assume that any element of F' which is
conjugate into some P; actually lies in P;. Write F = Fy U Fy, where F} =
F N (UP) is the set of parabolic elements of F', and F» = F' \ F} is the set of
non-parabolic elements of F'. Let S’ = SUF,. Note that since S is a compatible
generating set, so is S’. We may thus form the space X' = X(G,P,S’). By
Theorem 3.25, X’ is §’-hyperbolic for some §’ > 0.

Since SN P; = SN P;, the meaning of |K;|p, does not change in moving from
X to X’. We may thus apply Proposition 9.6 in the context of X’ rather than
X. The preferred path joining 1 to f in X’ is a single edge for any f € Fy. Let
C" = 24.230000" Proposition 9.6 implies that if |K;|p, > C” for each 4, then no
element of F is sent to 1 € G/K. Each f € F} is contained in some P;,. Let

c" = max{|f PifﬁS’: f c Fl}

and let ¢/ = max{C",C"'}. &

Using exactly analogous arguments to those in Proposition 9.6 we can obtain
the following result.

PROPOSITION 9.8: Suppose that G is torsion-free, and that |K;|p, > 18 - 2E2
for each i. Suppose that g € G is not conjugate into any P; € P, and that there
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is some x € X with p; go C D7*[0,Ly —1]. Then thereisnoh € G,p€ P € P
so that hgh™'p~! € K.

Proof. The constant for | K;|p, changes because we consider a disk with several
punctures. However, we have no control of the length of one of the punctures
(that corresponding to p).

Therefore, if there are m punctures corresponding to elements of the K;, then
there are 2(m + 1) — 1 = 2m + 1 < 3m triangles.

Otherwise, the proof is just as before. |

Remark 9.9: Once we have proved that G/K is hyperbolic relative to the images
of the P; in P, this will imply that g does not project to a parabolic element of
G/K.

Remark (about torsion) 9.10: In the presence of torsion, many of the arguments
in this section (and later sections) become more difficult to implement. In
particular, the notion of minimality for surfaces needs to be refined. Also, some
of the results in this section need to be reformulated in the presence of torsion.
The main issue here is that parabolics in G may already intersect nontrivially,
and this causes a number of problems.

10. The surgered space

In this section we make the following assumptions: G is a torsion-free group
which is hyperbolic relative to a collection P = { Py, ..., P,} of finitely generated
subgroups. The finite set S is a compatible generating set for G with respect
to P. Finally, (S,P | R) is a finite relative presentation for G.

Recall from Theorem 3.25, that under these assumptions, the space
X(G,P,S) is 6-hyperbolic for some §. Moreover, given the finite relative pre-
sentation (S, P | R), we may adjoin 2-cells to X (G, P, S) to form a two-complex
X = X(G,P,S,R) which satisfies a linear combinatorial isoperimetric inequal-
ity.

We further suppose that, for 1 < i < n, we have K; < P;. Let K <G be
the normal closure of the union of the K;. In order to construct a nice model
space for G/K it is essential that the P;/K; inject into G/K. We thus make
the standing assumption that:

Assumption 10.1: For each 1 <i < n, |K;|p, > 12252,
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The space X contains a copy of the Cayley graph I'(G, S) of G, and has an
associated depth function D: X — R, so that I'(G,S) € D71(0).

We now describe a “neutered” version of X, and how to modify it to get a
model for G/K.

Definition 10.2: Let Y = D~1([0, Ly]). The boundary of Y is 9Y = D~1(Ls).
If H < G then the boundary of Y/H is the image of 9Y in Y/H.

Remark 10.3: If the parabolics are not finitely presented, then Y will not be
simply connected. Its fundamental group is generated by those loops in D~1(Ls)
which cannot be filled in D~1(Ls).

The boundary of Y/G has n connected components which correspond to the
subgroups P4, ..., P,, as described in the next few paragraphs.

Let 1T € X/G be the image of the vertices of T'(G,S) in X/G. For each
1 < i < n there is a unique Ls-horoball in X stabilized by P;, which we denote
H;. There is a unique vertical path 4; joining 1 to (i,1,1, Ls) € H;.

Let 7; be the image of 4; in Y/G C X/G, and let ;' be ; in the opposite
direction. Let T; C Y/G be the component of 9(Y/G) containing the image
y; of (i,1,1,Ls). The vertical path +; induces an inclusion of 71 (T}, y;) into
m(Y/G,1).

Any loop in Y/G C X/G based at 1 lifts to a unique path in X starting at
1 and ending at some group element. This gives a well-defined homomorphism
from 71(Y/G,1) onto G, which maps 7 (7;) onto P;.

The next two lemmas follow from Assumption 10.1, together with Theorem
9.1.

LEMMA 10.4: If ¢ is any loop in a boundary component of Y/K of length less
than 12 < |K;|p, /2%2, then c lifts to a loop in Y .
In particular, there is no loop in d(Y/K) consisting of a single edge.

Definition 10.5: Let Z = Z(K) be the 2-complex obtained from Y/K by gluing
a combinatorial horoball onto each component of the boundary of Y/K.

Remark 10.6: The depth function on Y/ K naturally extends to a depth function
D on Z.

LEMMA 10.7: If each |K;|p, > 212, the complex Z is simply connected.
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Proof. The fundamental group of Y is generated by peripheral loops. Note that
we have an exact sequence:

1—my) —mY/K) — K —1

Thus, the fundamental group of Y/K is generated by the fundamental group of
Y together with peripheral loops in Y/K which represent elements of 71 (Y/K)
which map to normal generators of K.

Any peripheral loop eventually dies in a horoball, by Lemma 10.4 and Propo-
sition 3.7. ]

LEMMA 10.8: G/K acts freely and properly on Z.
We thus have the following diagram of spaces:

(6) X~—Y

L

X/K<—Y/K4>Z

|

X/G~—Y/G —> Z/(G/K)

Each horizontal arrow in (6) is an inclusion, and each vertical arrow is a covering
map.

We will show in Section 11 that Z satisfies a linear isoperimetric inequality
if the |K;|p, are sufficiently large. Together with Proposition 10.12 below, this
will imply that G/K is hyperbolic relative to P’ = {P1/K;,...,P,/K,}, and
hence complete the proof of Theorem 7.2.

LEMMA 10.9: There is a G /K-equivariant embedding p: Z() — (X/K)™").

Proof. The spaces Z and X/K are identical at depths less than or equal to Lo.
Thus there is an obvious map at these depths. It is also obvious that vertical
edges in Z can be uniquely associated to vertical edges in X/K.

A horizontal edge e in Z at depth L, + L corresponds to a path p at depth
Lo in Z of length at most 2°. This path has already been mapped to a path p’
in X/K at depth Ly (still of length at most 2%). The path p’ lifts to a path p/
in X (which is still of length at most 2%). The path p’ lies above an edge ¢’ in
X at depth Ls + L, which projects to an edge e’ in X/K. This is p(e). ]
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Observation 10.10: D~1(0) C Y/K C X/K is a relative Cayley complex for
G/K with respect to the finite relative presentation (S, P’ | R).

Recall the notation Hy from Definition 3.5, where H is a combinatorial
horoball.

LEMMA 10.11: Let A be a 0-horoball in X, and A its projection in X/K. Then
the intersection ANY/K is isomorphic to Hy,, where H = H(AN D~1(0)).

Proof. We define maps n1: ANY/K — Hp, and n2: Hp, - ANY/K.

There are obvious bijections on the 0-skeleta, which extend to isomorphisms
at the 0-level, and the vertical edges.

The first thing to note is that horizontal edges in ANY/K are not loops, by
Assumption 10.1 and Theorem 9.1. It is also true that horizontal edges in Hy,,
are not loops.

Consider a horizontal edge e € ANY /K, at depth L. This lifts to a horizontal
edge € in X at depth L. This can be pushed up to a path p of length at most
2L in D=Y(0) N A, which project to a path p in D~1(0) N A above e. We have
already defined 71 (p), and this path lies above an edge in Hy,, at depth L. This
edge is m1(e). Thus we have defined 7, on the 1-skeleton of ANY/K.

We now define 72 on the 1-skeleton of Hy,. Let ¢’ be an edge at depth L
in Hy,. There is a path p’ above ¢’ at the 0-level of Hy,. The path na(p’) is
already defined. The path 7,(p’) lifts to a path in D~1(0) N A, and lies above
an edge € in D~Y(L) N A, which in turn projects to an edge e in ANY/K. Set
n2(e') =e.

We have now defined 77 and 72 on the 1-skeleta, and we leave it as an exercise
to prove that they are mutually inverse.

The map n; obviously extends over the 2-skeleta. Consider then a 2-cell ¢ in
Hr,. Then n2(dc) is a loop in ANY/K of length at most 5. Suppose 72(dc)
lifts to a path o which is not a loop. Let k € K; be the element which sends one
endpoint of o to the other. Then |k|p,ns < 5.252, a contradiction. Therefore,
12(90c) does lift to a loop in Y, so there is a 2-cell filling n3(dc). This 2-cell is

n2(c). ]

The following proposition follows easily from Observations 3.6 and 10.10 and
Lemma 10.11.
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PROPOSITION 10.12: If |K;|p, > 12 -2L2 for all i € {1,...,n}, then Z is
equivariantly isomorphic to X(G/K,P’,S,R).

11. A linear isoperimetric inequality

We have reduced the proof of Theorem 7.2 to proving that the space Z satisfies
a homological isoperimetric inequality. This is proved in Theorem 11.11 below.
The proof of this result breaks neatly into two pieces: a combinatorial piece
(Proposition 11.10), and a homological piece (which becomes Theorem 11.11
below).

We continue to assume that G is a group which is hyperbolic relative to
P={P,...,P,}, and that K; < P; for each i. We let X = X(G,P,S,R), Y,
and Z be as described in section 10. In order to slightly simplify the proof of
Proposition 11.10, we replace Assumption 10.1 with the slightly stricter:

Assumption 11.1:
|K;|p, > 24252 = 24 . 930009

for each 1.

We show (Theorem 11.11) that under these conditions, the surgered space Z
described in section 10 satisfies a linear homological isoperimetric inequality. It
follows via Theorem 3.25 and Proposition 10.12 that G/ K is hyperbolic relative
to the images of the subgroups in P.

Let

p: ZM X/K(l)

be the map from Lemma 10.9.

LEMMA 11.2: Let w be a 2-cell in Z so that p(Ow) does not bound a 2-cell in
X/K. Then w C D71[Ly + 1,00).

Proof. p(Ow) must lie in D~!([Lg,00)) in X/K, since X/K and Z are identical
between depth 0 and Ls.

If p(Ow) does not surround a 2-cell, then it does not lift to a loop in X.
Thus, since the length of p(Ow) is at most 5, it lifts to a path in X of length 5,
whose endpoints are in the same orbit under the action of K. Theorem 9.1 and
Assumption 11.1 now imply that these points must lie in the same orbit under
the action of the stabilizer of the horoball in which they lie. Thus there is some
k € K; so that gkg—! sends one endpoint to the other for some g.
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Let L be the minimal depth of p(0w). There is a lift of p(dw) starting and
ending at depth L in X, and the endpoints of this lift are joined by a horizontal
path of length at most 4 (as the diligent reader may readily verify). Therefore,
the points at depth 0 above these endpoints may be joined by a horizontal path
of length at most 4-2L. The length of such a path is an upper bound for |k|p,ns,
so by Assumption 11.1 we have 4 - 2 > 24 . 2L2_ In particular, L > Ly + 1 as
required. |

Definition 11.3: We refer to 2-cells in Z as described in the above lemma as
missing 2-cells. Note that the map p extends to those 2-cells of Z which are
not missing.

Definition 11.4: Suppose that E is a cellulated disk, and that ¢: E — Z is
a combinatorial map. A partly missing piece of ¢ is a component C of
(Do¢)t(La,00) so that ¢(C) contains some missing 2-cell. Let E, C E be the
complement of the partly missing pieces of E.

Let E be a closed regular neighborhood of E, U OF whose image under ¢
contains no missing 2-cells (we may need to adjust ¢ by a small homotopy rel
OE, and re-cellulate, to ensure that E exists). A reducing arc for ¢ is an map
o: [0,1] — FE satisfying the following:

(1) o is an essential arc in E.

(2) The endpoints of ¢ lie in partly missing pieces of E.

(3) o is homotopic rel endpoints into D~ (Lo, c0), and this homotopy does
not pass over any missing 2-cell.

Remark 11.5: This is slightly different from the way reducing arcs were defined
in Section 8 for a couple of reasons. First, we need to deal with the possibility
that, for instance, two components of E \ E, have intersecting closures. Second,
we do not want to reduce along arcs with an endpoint in 0F, because this would
change the loop being filled.

LEMMA 11.6: Let E be a disk. Suppose that ~y is a combinatorial loop in Z,
and ¢: E — Z is a filling of v. Then there is some ¢': E — Z so that each
partly missing piece of ¢’ is simply connected, and the number of partly missing
pieces of ¢’ is no more than the number of partly missing pieces of ¢.

Proof. Fix a partly missing piece C', and let £ be the component of the boundary
of E which lies in C' and contains all other components of 9E N C. The loop
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(&) lies entirely in Z \ Y, and can thus be filled there. We set ¢’ = ¢ outside
of £, and set ¢’ equal to this new filling inside &. |

LeEMMA 11.7: Let E be a disk. Suppose that ~ is a combinatorial loop in Z,
and ¢: E — Z is a filling of v chosen so that the number of partly missing
pieces of E is minimized. Then there are no reducing arcs for ¢.

Proof. If there is a reducing arc o, we may reduce the number of partly missing
pieces as follows:

Suppose first that the arc joins distinct partly missing pieces. Then we
may cut open E along the arc and add in two copies of the homotopy into
D71[Ls,00), thus combining the two partly missing pieces into one. Since the
homotopy passes over no missing 2-cells, we have decreased the number of partly
missing pieces.

Next suppose that the arc o joins some partly missing piece C to itself. Again
we can cut open along ¢ and insert the homotopy, thus creating a non-simply
connected partly missing pieces. By Lemma 11.6, this non-simply connected
component can be replaced with a simply connected one. Since o was essential,
it enclosed at least one partly missing piece other than C, and so the modified
map has fewer partly missing pieces than it did before. |

Definition 11.8: If ¢ is a map of a disk E into Z, then po ¢
extended to a proper map of a punctured disk

E,udE can be

é: E, — X/K.

The surface E, can be obtained from E by removing a point from the interior
of each partly missing piece. The map ¢ is then defined to be equal to po ¢ on
FE, UOE. The complement of E, UJE in E, is a union of annuli; the map ¢
is defined so that the image of these annuli consists entirely of vertical squares,
just as in Definition 8.2.

The proof of Lemma 8.6 easily adapts to a proof of the following;:

LEMMA 11.9: Let E be a disk, and let ¢: E — Z be a map with no reducing
arcs, so that ¢ has at least one partly missing piece and ¢p(OF)NT 'k is nonempty.
Let T be a partially ideal triangulation of E, with a single vertex vy € OE =
O(E,) satisfying ¢(vg) € . Then ¢ is properly homotopic to a map

gﬁq-: E, — X/K
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which sends each edge of T to the image in X/K of a preferred path in X.
The key combinatorial step in proving Theorem 11.11 is the following:

PROPOSITION 11.10: There is a constant C = C(d) > 0 so that the following
holds: Let w: S' — Z be a combinatorial loop, and suppose that

¢o: E—Z

is a filling of this loop by a disk E, and that this filling has no reducing arcs. If
¢ has m > 1 partly missing pieces, then |w|; > Cm.

Proof. We will show that C' can be chosen equal to min{1, ﬁ}, where A
and € are the constants of quasi-geodesicity from Corollary 5.14. If w does not
intersect 'y = I'(G, S)/K, then w can be filled with a disk containing at most
one partly missing piece. We may therefore assume that w(1) € ' C Z.

Let v be a loop homotopic (rel 1) to the loop pow in X/K, so that v lifts to
a preferred path 7 in X. Let ¢ € G be the unique group element which sends
the initial point of & to the terminal point.

By Corollary 5.14, |y|1 = |71 < Ad(1,g) + €, where d(1,g) is the distance
from 1 to g in X. As |w|; is bounded below by d(1, g), we have

1
w1 > ——|7|i-
A+e

It thus suffices to bound |y|; below linearly in terms of m. We remark that
v(1) = (pow)(l) e 'y C X/K.

By assumption, we have a map ¢: F — Z of a disk into Z with no reducing
arcs. Let ¢: E, — X/K be the proper map from Definition 11.8 of an m-times
punctured disk into X/K. Note that QB\Q(E*) =pow.

Let T be a (partially ideal) triangulation of F, with one vertex the preimage
of (pow)(1) and all other vertices ideal, and one edge on the boundary. This
induces an obvious triangulation 7’ of the disk E.

By Lemma 11.9, ¢ is homotopic to ¢7: F, — X/K so that 457\3];* =, and
all edges of 7 map to paths in X/K which lift to preferred paths in X.

We now consider the map

67 Skel(dpr) — X/G U (91X)/G,

as in Remark 8.11.



424 D. GROVES AND J. F. MANNING Isr. J. Math.

Let p be a puncture on E,. The link Lk(p) in Skel(¢7) is a loop and we have
brlrep): S1— D7H([L2,00)) C X/G.

This loop represents a conjugacy class in P; for some 4, and this class is contained
in K;, by Lemma 8.15.

A puncture p is called interior if Lk(p) is composed entirely of ribs and
ligaments, and exterior otherwise. The puncture p corresponds to a vertex of
the triangulation 7’ of E, which we also describe as interior or exterior (see
Figure 30).

Figure 30. This picture shows a possible (actually, impossible)
picture of Skel(¢7), with two interior punctures, and the rest
exterior. Ribs and ligaments are shown in bold. Each of the
exterior punctures contributes at least 2 points to (D o

)7 (L)

Let V7 be the number of interior vertices of 77, and let Vy = m+1—V7 be the
number of exterior vertices. It is clear from the definitions that the cardinality
of (Do7)~Y(Ly) is at least 2(Vp —1). The set D~!(Ly) partitions 7 into subseg-
ments, which alternate between lying in D=1[0, Ly] and lying in D~1[Ls, o0).
As the initial and terminal points of 7 lie in D~1(0), those subsegments of 5
with image in D~[0, L] must have length at least Ly (In fact, all but the ini-
tial and terminal subsegments must have length at least 2L5, as they must pass
between distinct Lo-horoballs.). There are at least Vy such subsegments, and
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SO
(7) |’7|1 = |”ﬂ1 > Volo = (m—|— 1-— VI)L2 > (m — V])LQ

In order to bound |y|; below by a linear function of m, it therefore suffices to
show that V7 is at most some definite proportion of m (bounded away from 1).
Let R be the number of ribs in Skel(¢7). Then R < 6(2m — 1), by Corollary
5.39. However, R > 24V}, by Assumption 11.1 and Lemma 8.15.
This implies that V; < %m. By (7), we deduce that

L
Iv[1 > ?va

and hence

L
lw|p > 2 m
2(A+¢)

11.1. PROOF OF THEOREM 7.2. We make the same assumptions about G, P,
S, R and X stated at the beginning of the last section.

THEOREM 11.11: If min;{|K;|p,} > 24 -2F2 = 2423909 then Z satisfies a
homological linear isoperimetric inequality in the sense of Definition 2.28.

Proof. The idea behind the proof is as follows. Take a loop in Z, which is filled
by some disk. Attempt to move this disk to X/K, fail, and find a punctured
disk mapping into X/K. Triangulate, lift and straighten the triangles, project
back to X/K, attempt to transfer back to Z, fail and fill the failures.

By Theorem 2.26, it suffices to show that there is a constant M > 0 so that
any simple loop ¢ bounds a rational 2-chain w with

lw|y < M|cl;.

Let ¢ be a simple (combinatorial) loop in Z. If ¢ lies entirely inside a single
horoball, we may fill with a disk of area at most 3|c|; by Proposition 3.7. We
may thus suppose that ¢(1) € D=1(0) C Z. Thus p o c lifts to a path ¢ in
X between two (not necessarily distinct) vertices g and h of the Cayley graph
I'(G, S) € X. Consider the 1-chain ¢ corresponding to the path ¢. Then c¢—gqq 5
is a 1-cycle. By Proposition 6.6, |gy.n|1 < 600062%d(g,h) < 60006%|c|;. Hence,
if Mx is the homological isoperimetric constant for X, there is a 2-chain @ so
that 90 = ¢ — qq,1,, and |@[1 < Mx (600052 + 1)c|;.
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As Z is simply connected, there is a combinatorial map of a cellulated disk
E

¢: E—Z

so that ¢|sg is c. We may suppose that the map ¢ has the minimal possible
number of partly missing pieces in the sense of Definition 11.4. By Lemma
11.7, ¢ has no reducing arcs. By Proposition 11.10, the number of partly
missing pieces is at most C~!|c|, for a C > 0 which depends only on 6. Thus
we can triangulate the punctured surface E, defined in Definition 11.8 with a
triangulation 7 consisting of fewer than 2C~!|¢| triangles. Let ¢, be the map
from Lemma 11.9. This induces, for each triangle T" € 7, a preferred triangle
Y OA — X UOxX.

Suppose that T € 7, and that the image of the vertices of T" are a, b, and
¢ (with order coming from the orientation of T'). Let ¢y = cape, the 1-chain
defined in Definition 6.8, and let wy = wgpe be the 2-chain as in Corollary 6.11.
Let E: > rer wr- Bach wr satisfies |wr|; < MxTy by Corollary 6.11.

Now let p = my(w + €), and let p™ik be the 2-chain which comes from
including only those 2-cells which lie entirely in Y = D~1[0, Ls]. Note that

K]y < Jply < [Bl1 + (€]
< [(Mx (600002 + 1)) + 20~ Ty Mx]|c|x

Let M, = (Mx(60006% + 1) +2C~ 1Ty Mx.

thick j5 supported entirely in Y, it determines a 2-chain puz in Z.

thin

Since p
Furthermore, ¢'™" := ¢ — uz satisfies the following:
(1) The support of ¢M" lies entirely in D~1[Ly,00) C Z, and
(2) |ehin|y < e|i+|0uz| < (1+MM,)|c|1, where M is the maximum length
of the boundary of a 2-cell in Z (which is the same as that maximum
length in X).
Thus by Proposition 3.7 and Theorem 2.26 there is a 2-chain ( satisfying
(1) 8¢ = cthin | and
(2) [Clr < 3le™Py < 3(1+ MM,)]c|y.
Finally, we note that d(uz + ¢) = ¢ and |uz + 1 < |pzh + [Ch <
(M, +3+3MM,)|c|:. This completes the proof of Theorem 11.11, and hence
also of Theorem 7.2. n

We close by proving that G/K is nonelementary.
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THEOREM 11.12: Suppose that G is torsion-free and that |K;|p, > 24 - 22
for each i. Then G/K is non-elementary relatively hyperbolic (relative to

{i(Pi/Kq) Y

Proof. If all parabolics are finite, then G/K is hyperbolic.

By Theorem 3.33, there is a hyperbolic element ¢ € G with an axis which
is entirely contained in D71[0,196]. If # € X is contained in this axis, then
for all j, the preferred path p, g, is the geodesic between these points (since
196 + 6 < L;). Therefore, by Proposition 9.6, none of these elements die in
G/K. Therefore, G/K is infinite. Furthermore, by Proposition 9.8, g does not
project to a parabolic element of G/K. Thus G/K is not equal to any of the
t;(P;/K;). By Theorem 9.3, the intersection of two distinct parabolic subgroups
of G/K is trivial.

Suppose G/K is virtually cyclic. Then G/K has a finite normal subgroup
N with quotient either infinite cyclic or infinite dihedral. In fact, N must
be contained in every parabolic; and so it is trivial. However, the parabolic
subgroups of G/K have size (much) greater than 2.

We may now suppose that some ¢;(P;/K;) is infinite. We have already seen
that G/K does not equal ¢;(P;/K;) for any i, so Theorem 3.34 implies that
G /K is non-elementary relatively hyperbolic. |
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