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ABSTRACT

We introduce a number of new tools for the study of relatively hyperbolic

groups. First, given a relatively hyperbolic group G, we construct a nice

combinatorial Gromov hyperbolic model space acted on properly by G,

which reflects the relative hyperbolicity of G in many natural ways. Sec-

ond, we construct two useful bicombings on this space. The first of these,

preferred paths, is combinatorial in nature and allows us to define the

second, a relatively hyperbolic version of a construction of Mineyev.

As an application, we prove a group-theoretic analog of the Gromov-

Thurston 2π Theorem in the context of relatively hyperbolic groups.
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1. Introduction

A finitely generated group is word hyperbolic [16] if it acts properly and
cocompactly on a metric space (e.g., its Cayley graph) satisfying a certain coarse
geometric property called Gromov hyperbolicity (Definition 2.6 below). Two
spaces acted on properly and cocompactly by the same group will have the
same coarse geometry, so word hyperbolicity depends only on the group in
question. For example, the fundamental group of a compact hyperbolic n-
manifold acts properly and cocompactly on the hyperbolic space Hn, and so is
word hyperbolic. If G is the fundamental group of a non-compact but finite
volume hyperbolic n-manifold, then G also has an apparently natural action
on Hn. We say that groups with such actions on Gromov hyperbolic spaces
are relatively hyperbolic. Considering the case of fundamental groups of
finite area hyperbolic surfaces, we see that it is necessary first to specify a
collection of “peripheral” subgroups to determine an action up to some kind
of coarse equivalence. Thus it makes no real sense to ask whether a group is
relatively hyperbolic, but only to ask whether a group is hyperbolic relative to a
collection of subgroups. There are several competing ways to say what it means
for a group to be (strongly) hyperbolic relative to a collection of subgroups
[16, 13, 4]. These definitions are now all known to be equivalent.1 (See Section
2.9 for precise definitions and more examples of relatively hyperbolic groups.)

This paper has three main purposes. First, we introduce a new space (the
“cusped space”) for studying relatively hyperbolic groups (Section 3). Second,
we construct a pair of useful bicombings on this space (Sections 5 and 6). Third,
we extend Thurston’s Hyperbolic Dehn Surgery Theorem to the context of

1 In [35], Osin gives a more general definition where it is not assumed that parabolic

subgroups are finitely generated, or that there are finitely many conjugacy classes of

parabolic subgroups. Since the current paper appeared as a preprint, Chris Hruska [23]

has extended the definition proposed here (Theorem 3.25.(5)) to the infinitely generated

setting, and proved its equivalence to Osin’s definition.
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(torsion-free) relatively hyperbolic groups (Part 2). We discuss these now in
turn.

1.1. A new geometry for relatively hyperbolic groups. Roughly
speaking, a group G is hyperbolic relative to a collection P of subgroups if
the geometry of G is δ-hyperbolic, except for that part corresponding to the
subgroups in P. In Subsection 3.1 we define combinatorial horoballs which
are a way of embedding any graph into a δ-hyperbolic graph. We build the
cusped space by gluing onto the Cayley graph of G a collection of combinato-
rial horoballs, one for each coset of each subgroup in P. The resulting space is
Gromov hyperbolic if and only if G is hyperbolic relative to P. In case the space
is Gromov hyperbolic, the action of G on the space satisfies the conditions given
in Gromov’s original definition of relative hyperbolicity (Definition 2.38). The
cusped space thus combines the most useful combinatorial and coarse geometric
aspects of relatively hyperbolic groups. A closely related construction appears
in work of Cannon and Cooper [7] (also see [38] for another related construc-
tion). As in [7], if G is the fundamental group of a finite volume hyperbolic
n-manifold, and P consists of the fundamental groups of the cusps, the space
we build is quasi-isometric to Hn, though we do not provide a proof of this here.

Part of the novelty of the cusped space compared to the one in [7] is that it is
a graph (metrized so the length of each edge is 1), so that the metric and combi-
natorial aspects harmonize with each other more easily. This allows us to more
easily adapt a number of constructions and results in word hyperbolic groups
to the relative setting. In particular, we consider combinatorial isoperimetric
inequalities (Subsection 2.6), homological isoperimetric inequalities (Subsection
2.7) and a construction of Mineyev from [29]. Considering the different types of
isoperimetric inequalities and spaces, we get a number of new characterizations
of relatively hyperbolic groups.

Let G be a finitely generated group which is finitely presented relative to
a collection P = {P1, . . . , Pn} of finitely generated subgroups (see Subsection
2.4). Let Γ̂ be the coned-off Cayley graph for G with respect to P (see Definition
2.41), Ĉ the coned-off Cayley complex (see Definition 2.47), and let X be the
cusped space associated to G and P (defined in Section 3).

Then we have

Theorme 3.25: The following are equivalent:
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(1) G is hyperbolic relative to P in the sense of Gromov;

(2) G is hyperbolic relative to P (i.e., Γ̂ is Gromov hyperbolic and fine);

(3) Ĉ satisfies a linear combinatorial isoperimetric inequality;

(4) Ĉ satisfies a linear homological isoperimetric inequality;

(5) X(1) is Gromov hyperbolic;

(6) X satisfies a linear combinatorial isoperimetric inequality;

(7) X satisfies a linear homological isoperimetric inequality.

See Subsection 2.6 and Definition 2.28 for definitions of linear isoperimetric
inequalities (both combinatorial and homological).

The equivalence of (1) and (2) is by now well-known (see, for example, [10,
Appendix]). As far as we are aware, the equivalence of (2) and (3) has not
appeared elsewhere, though it is implicit in [35]. What is really novel about
Theorem 3.25 is the space X and the use of homological isoperimetric inequal-
ities.

1.2. Bicombings on relatively hyperbolic groups. The second main
purpose of this paper is the construction in Sections 4–6 of a pair of useful
bicombings on the cusped space. In Section 4, we prove a general result about
convex sets and between-ness in a Gromov hyperbolic space Υ. Given a fam-
ily G of ‘sufficiently separated’ convex sets we construct, for any pair of points
a, b ∈ Υ, a canonical collection of sets in G which are ‘between’ a and b. These
collections satisfy a number of axioms, and allow a great deal of combinatorial
control over triangles in Υ built from quasi-geodesics using our construction.

This analysis is carried out in Section 5, where we define preferred paths
for our space X. These give a G-equivariant bicombing of X by uniform quasi-
geodesics, whose intersection with horoballs is very controlled (this is where the
results from Section 4 are used). In particular (possibly partially ideal) triangles
whose sides are preferred paths have very well controlled combinatorial structure
(see Subsection 5.2 for details on this).

We expect that the construction in Section 4 and that of preferred paths in
Section 5 will have many applications. The first is the bicombing q which is
defined in Section 6. This gives a relatively hyperbolic version of a construction
of Mineyev from [29]. Applications of Mineyev’s construction are myriad (see,
for example, [29, 30, 31, 32, 33, 42]). It can reasonably be expected that many
of these results can be extended to the relatively hyperbolic setting using the
bicombing from Section 6 of this paper, or variations on it. In particular, in [19],
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we define a homological bicombing on the coned-off Cayley graph of a relatively
hyperbolic group (using the bicombing from this paper in an essential way)
in order to investigate relative bounded cohomology and relatively hyperbolic
groups, in analogy with [29] and [30]. Also, in [17], the first author proves that
if the parabolic subgroups of G act ‘nicely’ on a strongly bolic metric space (as
defined by Lafforgue [28]) then so does G. Using the work of Lafforgue [28] and
Druţu and Sapir [11], this has implications for the Baum-Connes conjecture for
certain relatively hyperbolic groups.

It is also worth noting that in Part 2 of this paper, the major tool is preferred
paths. The only time we need the homological bicombing (which is the ana-
logue of Mineyev’s construction) is in the proof of Theorem 11.11. Otherwise,
we use only the results from Section 5, which have no relation to Mineyev’s
construction.

1.3. Relatively hyperbolic Dehn filling. Part 2 of this paper is devoted
to another application of the constructions of Part 1. We investigate a group
theoretic analogue of Dehn filling, which is the third and final purpose of this
paper.

We first briefly remind the reader what is meant by “Dehn filling” in the
context of 3-manifolds. Suppose that M is a compact 3-manifold, with some
component T of ∂M homeomorphic to a torus. Let α be an essential simple
closed curve in T . Let W be a solid torus, and µ a meridian for W (a curve
which bounds an embedded disk in W ), and let φ : (∂W,µ) → (T, α) be a
homeomorphism of pairs. The 3-manifold

M(α) = M ∪φ W

obtained by gluing using φ is called the Dehn filling of M along α, and de-
pends up to homeomorphism only on the homotopy class of α in T . Thurston’s
Hyperbolic Dehn Surgery Theorem [40] says that if the interior of M admits a
hyperbolic metric, then so does the interior of M(α), for all but finitely many
choices of α. The number of curves to be excluded and the relationship between
the geometry of M and that of M(α) can be made quite precise (see for example
[22]).

On the level of fundamental groups, π1(M(α)) = π1(M)/〈〈a〉〉, where a is an
element of π1(M) whose conjugacy class is represented by α. One of the group
theoretic statements implied the Hyperbolic Dehn Surgery Theorem is
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Theorem 1.1 ([40]): Let G = π1(M) where M is a hyperbolic 3-manifold with

a single torus cusp C, and let P = π1(C) ∼= Z⊕ Z be the cusp subgroup. Then

for all but finitely many a ∈ P , G/〈〈a〉〉 is infinite, non-elementary, and word

hyperbolic.

This group theoretic statement finds its strongest quantitative formulation in
the “6 Theorem” independently due to Lackenby and Agol [26, 1].

Theorem 1.1 puts the conclusion of the Hyperbolic Dehn Surgery Theorem in
an algebraic context. Koji Fujiwara asked whether there was an algebraic ana-
logue of this theorem which also puts the hypotheses into an algebraic context.
We learned of this question from Danny Calegari.

As an answer to this question, we provide the following result (where |Ki|Pi

denotes the minimal length of a nontrivial element of Ki using the word metric
on Pi with respect to the generating set S ∩ Pi; see Definition 7.1):

Theorem 7.2: Let G be a torsion-free group, which is hyperbolic relative to a

collection P = {P1, . . . , Pn} of finitely generated subgroups. Suppose that S is

a generating set for G so that for each 1 ≤ i ≤ n we have Pi = 〈Pi ∩ S〉.
There exists a constant B depending only on (G,P) so that for any collection

{Ki}n
i=1 of subgroups satisfying

• Ki E Pi; and

• |Ki|Pi ≥ B,

then the following hold, where K is the normal closure in G of K1 ∪ · · · ∪Kn.

(1) The map Pi/Ki
ιi−→ G/K given by pKi 7→ pK is injective for each i.

(2) G/K is hyperbolic relative to the collection

Q = {ιi(Pi/Ki) : 1 ≤ i ≤ n}.
It is well-known (see, for example, [13, Theorem 3.8]) that a group which is

hyperbolic relative to a collection of word hyperbolic subgroups is word hyper-
bolic. Thus, an immediate corollary of Theorem 7.2 is the following:

Corollary 1.2: Under the hypotheses of Theorem 7.2, if each of the Pi/Ki

are themselves word hyperbolic, then G/K is word hyperbolic.

Together with Theorem 11.12 (non-elementariness), Corollary 1.2 unifies a
number of known results:
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(1) We have already remarked that Theorem 7.2 generalizes Theorem 1.1.
However, since we make no assumptions about the subgroups Pi, The-
orem 7.2 also generalizes the results of Lackenby from [27] about fill-
ing 3-manifolds some of whose boundary components are higher genus
surfaces (although we do not obtain such nice quantitative bounds as
Lackenby).

(2) Corollary 1.2 also generalizes some known results about hyperbolic
groups. For example, modulo the extra torsion-free hypothesis, Theo-
rem 7.2 is a generalization of statements (1)–(3) of [16, Theorem 5.5.D,
p. 149]. Of interest in this context is that we make no use whatsoever
of small cancellation techniques.

(3) Much of the group-theoretic content of many “CAT(−1)” or “CAT(0)
with isolated flats” filling constructions on hyperbolic manifolds with
torus cusps is also contained in Theorem 7.2. Examples of this are in
[39, 34]. (See also Remark 1.6.)

We now make a few more remarks about Theorem 7.2.

Remark 1.3: The “short” fillings really must be excluded in Theorem 7.2, as
can be seen, for instance, from the many examples of exceptional fillings of
hyperbolic 3-manifolds. By considering fillings of the Hopf link, we can see that
it is also important that each of the lengths |Ki|Pi is large.

An even simpler example is given by G equal to the free group 〈x, y〉, and
P = {P1 = 〈x〉, P2 = 〈y〉, P3 = 〈xy〉}. Choosing K1 = 〈xp〉, K2 = 〈yq〉, and
K3 = 〈(xy)r〉, the quotient G/K will be infinite and word hyperbolic if and
only if 1/p + 1/q + 1/r < 1. This occurs if all three of p, q, and r are at least 4,
but of course if p = q = 2, then r can be arbitrarily large while G/K remains
finite.

Remark 1.4: Since we have been, from the very beginning, working in the coarse
world of δ-hyperbolic spaces, we have no hope of obtaining the fine control over
constants, as obtained in [26, 1, 22]. Therefore, we have made very little attempt
throughout this paper to make our constants optimal.

However, it is worth remarking that there are some delicate interdependencies
between some of the constants we use.

Remark 1.5: Denis Osin has independently proved Theorem 7.2; see [36]. In
fact, Osin works in a somewhat more general setting, in two respects.
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First, Osin has a more general notion of relative hyperbolicity, which allows
infinitely many (possibly infinitely generated) parabolics. It can be shown (and
this is really implicit in Osin’s proof) that the appropriate statement for infin-
itely many infinitely generated parabolics follows from the statement for finitely
many finitely generated parabolics.2

Second, and more seriously, Osin makes no assumption of torsion-freeness in
[36]. We believe that our methods apply (with appropriate modification) to the
non-torsion-free case, at least to prove the analogue of Theorem 7.2, but at such
a cost in clarity and brevity that we have elected to deal only with the torsion-
free case. We have tried to make explicit our use of torsion-freeness and how
one might go about avoiding it (see Remarks 3.29, 5.2, 5.8, 5.45, 6.12, 5.18,8.8
and 9.10; on first reading, we recommend ignoring all of these comments; to
facilitate this, they are all labelled as ‘Remark (about torsion)’). Certain of our
results, which are not used in the proof of Theorem 7.2, must be considerably
rephrased in the presence of torsion (see especially Theorem 9.3).

Note also that Osin’s main theorem [36, Theorem 1.1] states that given a
finite set F ⊂ G, there is a B so that under the conditions of Theorem 7.2 the
map G → G/K is injective on F . This is Corollary 9.7 below.

Remark 1.6: It is worth noting that, even when starting with a rank one lo-
cally symmetric space, our group-theoretic version of filling produces hyperbolic
groups in many situations where the existence a locally CAT(−1) filling is not
at all clear; see the non-existence results of [25]. The advantage of a CAT(−1)
filling is that information about the fundamental group can be obtained from
local information about the locally CAT(−1) model. For more on this, see [14],
which is in preparation.

2. Preliminaries

2.1. Coarse geometry. All metric spaces will be assumed to be complete
geodesic metric spaces, and the distance between two points x and y will usually
be denoted d(x, y).

Definition 2.1: If X is a metric space, A ⊂ X and R ≥ 0, then let NR(A) be
the R-neighborhood of A in X.

2 For more on this, see [21].
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Definition 2.2: If X and Y are metric spaces, K ≥ 1 and C ≥ 0, a (K,C)-
quasi-isometric embedding of X into Y is a function q : X → Y so that for
all x1, x2 ∈ X

1
K

d(x1, x2)− C ≤ d(q(x1), q(x2)) ≤ Kd(x1, x2) + C

If in addition the map q is C-coarsely onto, i.e., NC(q(X)) = Y − q, it is
called a (K, C)-quasi-isometry. The two metric spaces X and Y are then said
to be quasi-isometric to one another. This is a symmetric condition.

Definition 2.3: A (K,C)-quasi-geodesic in X is a (K, C)-quasi-isometric em-
bedding γ : R → X. We will occasionally abuse notation by referring to the
image of γ as a quasi-geodesic.

A (K,C)-quasi-geodesic ray is a (K, C)-quasi-isometric embedding

p : R≥0 → X.

2.2. Gromov hyperbolic spaces. Given a geodesic triangle ∆(x, y, z) in any
geodesic metric space, there is a unique comparison tripod, Yxyz, a metric
tree so that the distances between the three extremal points of the tree, x, y

and z , are the same as the distances between x, y and z (see Figure 1). There

x
y

z

x

y

z

π

∆xyz Yxyz

Figure 1. A triangle and its comparison tripod

is a unique map
π : ∆(x, y, z) → Yxyz

which takes x to x, y to y and z to z, and which restricts to an isometric
embedding on each side of ∆(x, y, z).

Definition 2.4: Let δ ≥ 0. The triangle ∆(x, y, z) is δ-thin if the diameter of
π−1(p) is at most δ for every point p ∈ Yxyz.
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Remark 2.5: Any triangle which is δ-thin is also δ-slim, i.e., any side of the
triangle is contained in the δ-neighborhood of the union of the other sides. More
generally, a geodesic n-gon is (n − 2)δ-slim. Also, for every δ there is a δ′ so
that δ-slim triangles are δ′-thin (see [5, Proposition III.H.1.17, p. 408]).

Definition 2.6: A geodesic metric space X is δ-hyperbolic if every geodesic
triangle in X is δ-thin. If δ is unimportant we may simply say that X is
Gromov hyperbolic.

See [5, Chapter III.H] for the background and many basic results about Gro-
mov hyperbolic spaces.

Definition 2.7: Let x, y, z ∈ X. The Gromov product of x and y with
respect to z is (x, y)z = 1

2 (d(x, z) + d(y, z) − d(x, y)). Equivalently, (x, y)z is
the distance from z to the central vertex of the comparison tripod Yxyz for any
geodesic triangle ∆(x, y, z).

Definition 2.8: Fix some z ∈ X, where X is some Gromov hyperbolic metric
space. We say that a sequence {xi} tends to infinity if lim infi,j→∞(xi, xj)z =
∞. On the set of such sequences we may define an equivalence relation: {xi} ∼
{yi} if lim infi,j→∞(xi, yj)z = ∞. The Gromov boundary of X, also written
∂X, is the set of equivalence classes of sequences tending to infinity. The Gro-
mov boundary does not depend on the choice of z (see [5, Proposition III.H.3.7]).

Remark 2.9: We may topologize X ∪ ∂X so that if {xi} tends to infinity, then
limi→∞ xi = [{xi}]. Furthermore, if γ : [0,∞) → X is a quasi-geodesic ray,
then for any sequence {ti} with limi→∞ ti = ∞, the sequence {γ(ti)} tends to
infinity. The point {γ(ti)} ∈ ∂X does not depend on the choice of {ti}. An
isometric action on X extends to a topological action on the boundary.

Remark 2.10: We will implicitly assume, whenever we say that a space is δ-
hyperbolic, that triangles are δ-thin and δ-slim.

This can be achieved by replacing δ by some larger constant.
We will also assume that δ is an integer.

One can also consider geodesic “triangles” in a Gromov hyperbolic space X

whose vertices are ideal, i.e., points in ∂X. The following is a simple exercise
in δ-slim triangles.
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Lemma 2.11: A geodesic triangle in a δ-hyperbolic space with some or all

vertices ideal is 3δ-slim.

2.3. Cayley graph. Although there is little difference between various defini-
tions of the Cayley graph, it is convenient to fix one here. By “G is generated
by S”, we mean that there is a surjection

π : F(S) → G,

where F(S) is the free group on the set S. If S ⊂ G, then we implicitly assume
π is the homomorphism induced by inclusion. The Cayley graph of G with
respect to S, written Γ(G,S), is the graph with vertex set G, and edge set
G× S. The edge (g, s) connects the vertices g and gπ(s).

2.4. Relative presentations. We recall the following definitions of Osin.
(We change the notation slightly.)

Definition 2.12 ([35, Definition 2.1]): Let G be a group, {Hλ}λ∈Λ a collection
of subgroups of G, and A a subset of G. We say that A is a relative generating
set for G with respect to {Hλ}λ∈Λ if G is generated by

A ∪
( ⋃

λ∈Λ

Hλ

)
.

We will be concerned with situations where the index set Λ is finite.

Definition 2.13 (Osin): Suppose that G is generated by A with respect to
{Hλ}λ∈Λ. Then G is a quotient of

F = F (A) ∗ (∗λ∈ΛHλ) ,

where F (A) is the free group on the alphabet A. Suppose that N is the kernel
of the canonical quotient map from F to G. If N is the normal closure of the
set R then we say that

〈A, {Hλ}λ∈Λ | R〉,
is a relative presentation for G with respect to {Hλ}λ∈Λ.

We say that G is finitely presented relative to {Hλ}λ∈Λ if we can choose
R to be finite.

The following lemma is essentially contained in Theorem 2.44 of [35].
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Lemma 2.14: If G is a finitely generated group, finitely presented relative to

a collection of nontrivial subgroups {Hλ}λ∈Λ, then Λ is finite and each Hλ is

finitely generated.

Proof. By Theorem 2.44 of [35], there is a finite subset Λ0 ⊆ Λ so that

G ∼= (∗λ∈ΛrΛ0Hλ) ∗G0,

where G0 is generated by
⋃

λ∈Λ0
Hλ and the finite relative generating set for G.

By Grushko’s Theorem, and the fact that G is finitely generated, Λ r Λ0 is
also finite. Moreover, each Hλ for λ ∈ Λr Λ0 is finitely generated, as is G0.

Osin’s theorem further asserts that G0 has the structure of a tree of groups,
where each edge group is finitely generated. The collection of vertex groups is
{Hλ}λ∈Λ0 ∪ {Q} where Q is some finitely generated group. Since G0 is finitely
generated, an elementary application of Bass-Serre theory shows that each Hλ

is finitely generated.

Definition 2.15: Suppose that G is finitely generated, and also finitely presented
relative to {H1, . . . , Hm}. By Lemma 2.14, each of the Hi is finitely generated.
In this situation, we usually fix a finite generating set S for G so that for each
1 ≤ i ≤ m we have 〈S ∩ Hi〉 = Hi. We call such a set S a compatible
generating set for G.

Definition 2.16 (Relative Cayley complex): Suppose that G is finitely presented
relative to the finitely generated subgroups {H1, . . . ,Hm}, and that S is a finite
compatible generating set for G. Let

〈A, {H1, . . . , Hm} | R〉,

be a finite relative presentation for G, where A ⊂ S is a set of relative generators
for G.

Let Γ = Γ(G,S) be the Cayley graph of G with respect to S. The elements
of R correspond to loops in Γ. We glue a 2-cell to each such loop, in a manner
equivariant under the G-action on Γ. The resulting 2-complex is called the
relative Cayley complex of G with respect to 〈S, {H1, . . . , Hm} | R〉, and is
denoted C(G,S,R).

In general, the relative Cayley complex of G will not be simply-connected.
This will only be the case if 〈S | R〉 is already a presentation for G.
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In Subsection 2.9 below, we define a simply-connected 2-complex Ĉ associated
to a finite relative presentation of relatively hyperbolic group, starting with the
relative Cayley complex.

Also, in Section 3, we construct another simply-connected 2-complex X, again
starting with a finite relative presentation of a relatively hyperbolic group.

The spaces X and Ĉ both contain copies of the relative Cayley complex.

2.5. Combinatorial maps, chains, etc.

Definition 2.17: Let Y be a cell complex, and let ω =
∑

i αiωi be a real cellular
n-chain. The 1-norm of ω is

|ω|1 =
∑

i

|αi|.

Definition 2.18: Suppose that Y is a 2-complex and that p : I → Y (1) is a
combinatorial path, in the sense that there is a cell structure on I so that p

sends each edge either to an edge or a vertex of Y .
The length, or 1-norm of p is then the number of 1-cells in I which are

mapped onto edges of Y . We denote the 1-norm of p by |p|1.
The map p induces an obvious cellular 1-chain p on Y (using the orientation

on I).

Definition 2.19: Suppose that Y is a 2-complex and Σ an oriented, cellulated
surface. A combinatorial map is a map f : Σ → Y which sends each vertex
of Σ to a vertex of Y , each edge of Σ to an edge or a vertex of Y and each
2-cell to a 2-cell, an edge, or a vertex of Y . Furthermore, if σ is a cell in Σ
which is sent to a cell of the same dimension then the interior of σ is mapped
homeomorphically by f onto its image.

The area of a combinatorial map f : Σ → Y is the number of 2-cells in Σ
which are mapped onto 2-cells. When we refer to the ‘1-norm’ of a map between
2-complexes, we mean the area.

As in the 1-dimensional setting, a combinatorial map f : Σ → Y induces an
integral, cellular 2-chain f on Y .

Remark 2.20: If f is a combinatorial map of an interval or a surface into a
2-complex Y then |f |1 ≤ |f |1.



Vol. 168, 2008 RELATIVELY HYPERBOLIC DEHN FILLING 331

Remark 2.21: Throughout this paper we are somewhat cavalier about the dif-
ference between paths as maps, paths as subsets, and 1-chains. This should not
cause any confusion.

2.6. Combinatorial isoperimetric inequalities. Any Gromov hyperbolic
space satisfies a linear coarse isoperimetric inequality (see Proposition III.H.2.7
in [5]). However, when we work with homological isoperimetric inequalities
below, we need to use simply connected spaces.

Thus we pause in this paragraph to consider combinatorial isoperimetric in-
equalities. There is little novel here, but it is worth noting that our spaces are
not always locally finite, are not uniformly locally finite even when they are
locally finite, and there will rarely be a proper and cocompact action on the
Gromov hyperbolic spaces in this paper. Thus we need to be slightly careful
about the hypotheses in the results below.

Proposition 2.22: Let X be a simply-connected 2-complex and suppose that

X(1) is δ-hyperbolic. Suppose further that for some K ≥ 0, any combinatorial

loop of length at most 16δ can be filled with a combinatorial disk of area at

most K. Then any combinatorial loop c in X can be filled with a combinatorial

disk whose area is at most K|c|1.
Proof. This is essentially Dehn’s algorithm. See the proof of [5, Proposition
III.H.2.7].

Proposition 2.23: Suppose that X is a simply connected 2-complex and that

there is a constant M ≥ 0 so that the length of the attaching map of any 2-cell

is at most M .

If X satisfies a linear combinatorial isoperimetric inequality, then X(1) is

δ-hyperbolic for some δ.

Furthermore, δ can be calculated in terms of M and the isoperimetric constant

of X.

Proof. Follows from the proof of [5, Theorem III.H.2.9], or from a combinatorial
version of the proof of Theorem 2.30 below.

2.7. Homological things. In [15], Gersten proves that a group is hyperbolic
if and only if it has a linear homological filling function. In this section we
recall those notions and extend them slightly in order to account for the fact
that the actions on Gromov hyperbolic spaces in this paper are rarely proper
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and cocompact (though they are usually one or the other). In this section we
prefer to work with rational coefficients. However, real or complex coefficients
would also work.

We recall some standard definitions:

Definition 2.24: Let Y be a cell complex, A a normed abelian group (with norm
‖ · ‖), and let Cn be the set of n-cells of Y . A locally finite n-chain in Y

with coefficients in A, ω is a formal sum

ω =
∑

c∈Y

ωcc,

where each ωc ∈ A. The chain ω is said to be summable if

|ω|1 :=
∑

c∈Y

‖ac‖ < ∞.

The quantity |ω|1 is the norm of ω. The support of ω is the union in Y of
the n-cells c for which ωc is nonzero.

The chains of compact support form the standard cellular chain group
Cn(Y,Z).

We first recall a result from [30] about expressing 1-chains as sums of paths.
Note that this result is a generalization of [3, Theorem 3.3].

Definition 2.25: Suppose that Γ is a graph and T is a collection of vertices. A
T -path is a directed path in Γ whose initial and terminal vertices are in T (or
are equal).

A path is simple if it has no repeated vertices.

Let f be a summable 1-chain in a graph Γ. Let Γ(f) denote the directed
graph which is Γ with an orientation chosen so that f(e) ≥ 0 for each edge
e. Let Γ+(f) be the minimal subgraph of Γ(f) containing all the edges e with
f(e) 6= 0.

Theorem 2.26 (Mineyev, Theorem 6, [30]): Let Γ be a graph, T a set of vertices

in Γ and f a summable 1-chain on Γ with coefficients in Q and supp(∂f) ⊂ T .

(a) There is a countable family P = {p1, p2, . . .} of simple T -paths in Γ+(f)
and a sequence {αi} in Q ∩ [0,∞) so that (i) f =

∑
i αipi; and (ii)

|f |1 =
∑

i αi|pi|1.
(b) If f has finite support then P can be chosen to be finite.
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Definition 2.27: Suppose that f =
∑

i αipi expresses the 1-chain f as a sum of
1-chains αipi, where αi ∈ Q≥0. This sum is called coherent if |f |1 =

∑
i αi|pi|1.

Definition 2.28: Suppose that Z is a simply-connected 2-complex. We say that
Z satisfies a linear homological isoperimetric inequality if there is a con-
stant K ≥ 0 so that for any combinatorial loop c in Z there is some σ ∈ C2(Z;Q)
with ∂σ = c, satisfying

|σ|1 ≤ K|c|1.
See [30, Theorem 7] for (many) other notions of what it might mean for a

space to have a ‘linear isoperimetric inequality’. In this paper, we exclusively
use the notion from Definition 2.28 above.

The next result follows immediately from the definitions.

Lemma 2.29: If a simply-connected 2-complex Z satisfies a linear combinato-

rial isoperimetric inequality, then it satisfies a linear homological isoperimetric

inequality.

In [15], Gersten proves that the Cayley complex of a finitely presented group
G satisfies a linear homological isoperimetric inequality if and only if G is hy-
perbolic. This is essentially a converse to Lemma 2.29 above. In this section
we slightly generalize Gersten’s result. However, most of our work is in noting
that the proof of Gersten’s result from [30] works in our setting.

Theorem 2.30: Suppose that Z is a simply-connected 2-complex and that

there is a constant M so that the attaching map for each 2-cell in Z has length

at most M .

Suppose further that Z satisfies a linear homological isoperimetric inequality.

Then Z(1), the 1-skeleton of Z, is δ-hyperbolic for some δ.

Proof. The proof consists of noting that a number of other proofs in the litera-
ture do not rely essentially on finite valence.

The first step is to prove that if Z is not Gromov hyperbolic then for any
ε > 0, there are ε-thick geodesic bigons in Z. This is essentially [37, The-
orem 1.4], modified in the obvious way. Namely, for each M , define f(r) =
inf{d(γ(R + r)), γ′(R + r))} where the infimum is taken over all positive inte-
gers R and all γ, γ′, geodesics such that γ(0) = γ′(0) and d(γ(R), γ′(R)) ≥ 2M2.
This is not quite the function that Papasoglu uses, but it suffices for the proof.
The remainder of the proof of this first step is identical to that in [37].
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Now follow the proof of [30, Proposition 8] to prove that if there are ε-thick
bigons in Z for ε > 0, then Z does not have a linear homological isoperimetric
inequality. Mineyev’s argument relies only on a bound on the length of attaching
maps for 2-cells (and not, for instance, on vertex transitivity or local finiteness).
It is certainly worth remarking that Mineyev relies on a result of Gersten [15],
which similarly requires only a bound on the attaching maps of 2-cells.

2.8. Homological bicombings. There are various notions of “bicombing” for
graphs. In particular, one can define combings made up of paths or of 1-chains.

Definition 2.31: Let Γ be a graph, and let Geod(Γ) be the set of (oriented)
geodesics in Γ. That is, each element of Geod(Γ) is a path σ : I → Γ, where
I ⊂ R and σ is parametrized by arc length. A geodesic bicombing on Γ is a
function

γ : Γ(0) × Γ(0) → Geod(Γ)

so that γ(x, y) is a geodesic which begins at x and ends at y.

Definition 2.32: Let Γ and Geod(Γ) be as in Definition 2.31. Let Γ be some com-
pactification (or bordification) of Γ(0), and let Λ ⊆ Γ. A geodesic bicombing
on Λ is a function

γ : Λ× Λr∆ → Geod(Γ),

where ∆ = {(x, x) : x ∈ Λ} and

(1) If x ∈ Γ(0), then γ(x, y) starts at x; otherwise, limt→−∞ γ(x, y)(t) =
x ∈ Λr Γ.

(2) If y ∈ Γ(0), then γ(x, y) ends at y; otherwise, limt→∞ γ(x, y)(t) = y ∈
Λr Γ.

Definition 2.33 ([29]): Suppose that Γ is a graph, and A is a ring. Let C1(Γ;A)
be the group of finite formal sums of 1-cells in Γ with coefficients in A. A
homological bicombing on Γ is a function

q : Γ(0) × Γ(0) → C1(Γ;A)

so that ∂q(a, b) = b− a.

Remark 2.34: It is clear that a geodesic bicombing as in Definition 2.31 gives
rise to a homological bicombing as in Definition 2.33. It is slightly less obvious
(but also true) that we can use a bicombing as in Definition 2.32 to produce
something homological.
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Definition 2.35: Let Γ be a graph and A a ring, and let C1(Γ;A) be the group
of (locally finite) formal sums of 1-cells in Γ. Let Γ be some compactification
(or bordification) of Γ(0), and let Λ ⊆ Γ. Let q be a function

q : Λ× Λ → C1(Γ;A),

which is zero precisely on ∆ = {(x, x) : x ∈ Λ}. Given R ∈ N, x, y ∈ Λ, and
z ∈ Γ(0), let qz,R(x, y) be the 1-chain which is equal to q(x, y) on the ball
of radius R about z, and zero outside it. The function q is a homological
bicombing on Λ if it satisfies the following condition: For every x, y ∈ Λ, and
z ∈ Γ(0), there is an R0 so that for every integer R > R0, there exist 0-chains
ξR,+ and ξR,−, each with coefficients summing to 1 so that:

(1) ∂qz,R(x, y) = ξR,+ − ξR,− for all R > R0,
(2) any sequence {yi}∞i=R0

with yi ∈ ξi,+ satisfies limi→∞ yi = y, and any
sequence {yi}∞i=R0

with xi ∈ ξi,− satisfies limi→∞ xi = x.

Definition 2.36: Let Γ be a graph with a compactification Γ of Γ(0), and let
Λ ⊆ Γ. Let ε > 0. A homological bicombing q : Λ × Λ → C1(Γ;R) is ε-quasi-
geodesic if both

(1) q(a, b) has support in the ε-neighborhood of some geodesic between a

and b, and
(2) If a, b ∈ Γ(0), then |q(a, b)|1 ≤ εd(a, b).

Remark 2.37: In general, one may also want to place constraints on the 1-norms
of finite “subsegments” of q(a, b), where a and b are ideal points. However, we
do not need this refinement in this paper.

2.9. Relatively hyperbolic groups. Relatively hyperbolic groups were first
defined by Gromov in [16]. Alternative definitions were given by Farb [13] and
Bowditch [4]. These definitions are all equivalent. See [10, Appendix].

Further characterizations of relatively hyperbolic groups are given by Osin
[35], in terms of relative Dehn functions, and Yaman [41], in terms of conver-
gence group actions.

Recently there has been a large amount of interest in relatively hyperbolic
groups. (See [6], [8], [12], [18], [35], among many others).

Here is the original definition of Gromov’s [16, Section 8.6]:
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Definition 2.38: Suppose that G acts isometrically and properly on a proper,
geodesic, Gromov hyperbolic metric space X, so that the quotient is quasi-
isometric to a wedge of n rays. Let γ1, . . . , γn be unit-speed geodesic rays in
X/G tending to distinct points in the Gromov boundary of X/G, and choose
lifts γ̃1, . . . , γ̃n to X. For each i, let ei be the point in ∂X to which γ̃i limits, and
let Pi be the stabilizer in G of ei. For each i define a horofunction hi : X → R
by

hi(x) = lim sup
t→∞

d(x, γ̃i(t))− t.

The R-horoballs of X are the sub-level sets Bi(R) = h−1
i (−∞, R) and their

G-translates. Assume that there exists a constant R so that for any g ∈ G and
any i, j, either gBi(R) ∩ Bj(R) is empty or i = j and g ∈ Pi. Finally, suppose
that G acts cocompactly on the complement of the union of the horoballs. Then
we say that G is hyperbolic relative to P = {P1, . . . , Pn} in the sense of
Gromov.

Definition 2.39: Suppose that G is a relatively hyperbolic group acting on the
δ-hyperbolic space X as in Definition 2.38. An element g ∈ G is called hyper-
bolic if it does not have a bounded orbit in X, and it fixes exactly two points
in ∂X.

We say that G is non-elementary relatively hyperbolic if there are hy-
perbolic elements g, h in G so that Fix∂X(g) ∩ Fix∂X(h) = ∅.
Remark 2.40: By the usual Ping-Pong argument, if g, h are as in Definition
2.39, then there is some j ≥ 1 so that gj and hj generate a free group.

The following is another definition of relatively hyperbolic groups, which is a
hybrid of Farb’s [13] and of Bowditch’s [4].

Definition 2.41 (Coned-off Cayley graph): Suppose that G is a finitely generated
group, with finite generating set S. Let Γ(G, S) be the Cayley graph of G with
respect to S.

Suppose that P = {P1, . . . , Pk} is a finite collection of finitely generated
subgroups of G. We form a new graph containing Γ(G, S), called the coned-
off Cayley graph and denoted Γ̂(G,P, S) as follows:

For each i ∈ {1, . . . , k} and each coset gPi we add a new vertex, vg,i to
Γ(G,S). We also add a vertex from each element of gPi to vg,i.
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Definition 2.42 (Fine graphs; see [4, page 11]): A (not necessarily locally finite)
graph K is fine if for every edge e in K and each integer L > 0, the number of
simple simplicial loops of length at most L which contain e is finite.

Definition 2.43: Suppose that G is a finitely generated group and that P =
{P1, . . . , Pk} is a collection of finitely generated subgroups. We say that G is
hyperbolic relative to P if the coned-off Cayley graph Γ̂(G,P, S) is fine and
δ-hyperbolic for some δ > 0.

Remark 2.44: By now the class of groups which we call ‘relatively hyperbolic’
is standard. However, we should point out that, in the terminology of [13], G is
hyperbolic relative to P if and only if the coned-off Cayley graph is δ-hyperbolic.
Farb’s hypothesis of Bounded Coset Penetration is equivalent to fineness of Γ̂
(see, for instance, [10, Appendix]). It is shown in [6] and [10, Appendix] that
Definitions 2.38 and 2.43 are equivalent.

Whenever G is hyperbolic relative to P, we will always assume that our
(finite) generating set for G is compatible, in the sense of Definition 2.15.

We briefly list some examples of relatively hyperbolic groups (and the sub-
groups they are hyperbolic relative to):

(1) Hyperbolic groups are hyperbolic relative to the empty collection of
subgroups;

(2) Fundamental groups of geometrically finite hyperbolic manifolds are
hyperbolic relative to the cusp subgroups;

(3) Free products are hyperbolic relative to the free factors;
(4) A group which acts properly and cocompactly on a CAT(0) space with

isolated flats is hyperbolic relative to the stabilizers of maximal flats
(see [24]; and [12]);

(5) Limit groups are hyperbolic relative to maximal noncyclic abelian sub-
groups (see [2] and [9]).

In Section 3, we introduce a ‘cusped’ space, X(G,P, S), associated to a group
G and finite collection P of finitely generated subgroups. We prove that G is
hyperbolic relative to P if and only if X(G,P, S) is δ-hyperbolic for some δ.

Remark 2.45: One of the important features of the space X defined in Section 3
below is that if G is hyperbolic relative to P, then the action of G on X(G,P, S)
satisfies the requirements of Definition 2.38 (see Theorem 3.25).
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There are a number of previous constructions of cusped spaces (for example,
Cannon and Cooper [7], Bowditch [4] and Rebbechi [38]). The novelty in our
space X is that it is a graph metrized so that edge lengths are 1. Thus we can
apply many combinatorial constructions directly, such as isoperimetric inequal-
ities (combinatorial and homological). Importantly, in Section 6 below, we can
also apply a construction of Mineyev from [29].

Another important feature of the space X is that there is a bound on the
lengths of the attaching maps of 2-cells.

By Osin [35, Theorem 1.5], relatively hyperbolic groups are always finitely
presented relative to their parabolics. (This also follows from the construction
of the relative Rips complex in [8].)

Theorem 2.46 ([35, Theorem 1.5]): Let G be a finitely generated group,

{H1, . . . ,Hm} a collection of subgroups of G. The following are equivalent:

(1) G is finitely presented with respect to {H1, . . . , Hm} and the corre-

sponding relative Dehn function is linear;

(2) G is hyperbolic relative to {H1, . . . ,Hm}.

Recall by Lemma 2.14 that if G is finitely generated, and finitely presented
relative to {H1, . . . , Hm}, then each of the Hi is finitely generated.

In this paper, we have no need for the ‘relative’ Dehn functions of [35]. Rather,
we construct simply-connected 2-complexes with linear combinatorial isoperi-
metric inequalities. (They also have linear homological isoperimetric inequali-
ties; see Theorem 3.25 below.)

Definition 2.47 (Coned-off Cayley complex): Suppose that G is a finitely gen-
erated group, with a collection P of finitely generated subgroups, and that
〈A,P | R〉 is a finite relative presentation for G.

Let S be a (finite) compatible generating set for G containing A. Form a
2-complex Ĉ(G,P, S,R), called the coned-off Cayley complex as follows:

Let C = C(G,P, S) be the coned-off Cayley graph (which contains a copy of
the Cayley graph Γ(G,S). Attach 2-cells to C in a G-equivariant way, corre-
sponding to the relations R. Also, add a 2-cell to each loop of length three in
C which contains an infinite valence vertex.
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Lemma 2.48: The coned-off Cayley complex is simply-connected.

Proposition 2.49: Suppose that G is hyperbolic relative to P, and let S be

a finite generating set for G containing generating sets for each subgroup in P.

Also, let 〈S,P | R〉 be a finite relative presentation for G.

Form the coned-off Cayley complex Ĉ(G,P, S,R). Then Ĉ(G,P, S,R) has a

linear combinatorial isoperimetric inequality.

Proof. Since G is hyperbolic relative to P, the coned-off Cayley graph is δ-
hyperbolic and fine. Therefore, there are only finitely many orbits of simple
loops of length at most 16δ. Since Ĉ(G,P, S,R) is simply-connected, this im-
plies that there exists K so that every combinatorial loop of length at most 16δ

can be filled with a combinatorial disk in Ĉ(G,P, S,R) of area at most K.
The result now follows immediately from Proposition 2.22.

We now prove the converse to Proposition 2.49.

Proposition 2.50: Suppose that G is finite presented relative to

P = {P1, . . . , Pn}

and that 〈S,P | R〉 is a finite relative presentation for G.

If the coned-off Cayley complex Ĉ = Ĉ(G,P, S,R) satisfies a linear combina-

torial isoperimetric inequality then the coned-off Cayley graph Γ̂ = Γ̂(G,P, S)
is Gromov hyperbolic and fine.

Proof. That Γ̂ is δ-hyperbolic for some δ follows from Proposition 2.23, since
there is certainly a bound on the length of the attaching maps of 2-cells in Ĉ.

It remains to prove that Γ̂ is fine. Take an edge e and a simple simplicial loop
c containing e of length L. Now, there are only finitely many 2-cells adjacent
to each edge in Ĉ. A simple loop may be filled by a topological disk, and the
isoperimetric function supplies a bound on the area of such a disk in terms of
the length. In particular, suppose a simple loop of length at most L can be
filled by a topological disk of area at most L′. There are only finitely many
topological disks of area at most L′ containing e on the boundary, so there are
only finitely many simple loops of length at most L containing e. Therefore Γ̂
is fine.
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It is a consequence of Theorem 3.25 that the hypothesis in Proposition 2.50
can be weakened to that of having a homological linear isoperimetric inequal-
ity, but we do not know a direct proof. This raises a natural question (if the
answer is positive, then it can be used to give a direct proof):

Question 2.51: Let X be a simply connected 2-complex with a homological

(linear?) isoperimetric inequality, a bound on the length of attaching maps of

2-cells and finitely many 2-cells adjacent to any edge. Must X be fine?

Part 1. The cusped space and preferred paths

3. The cusped space

The purpose of this section is to construct a space X from a finitely generated
group G, and a finite collection P of finitely generated subgroups. The utility
of X is that it is Gromov hyperbolic if and only if G is hyperbolic relative to P
(see Theorem 3.25).

3.1. Combinatorial horoballs.

Definition 3.1: Let Γ be any 1-complex. The combinatorial horoball based
on Γ, denoted H(Γ), is the 2-complex formed as follows:

• H(0) = Γ(0) × ({0} ∪ N)
• H(1) contains the following three types of edges. The first two types are

called horizontal, and the last type is called vertical.
(1) If e is an edge of Γ joining v to w, then there is a corresponding

edge e connecting (v, 0) to (w, 0).
(2) If k > 0 and 0 < dΓ(v, w) ≤ 2k, then there is a single edge con-

necting (v, k) to (w, k).
(3) If k ≥ 0 and v ∈ Γ(0), there is an edge joining (v, k) to (v, k + 1).

• H(2) contains three kinds of 2-cells:
(1) If γ ⊂ H(1) is a circuit composed of three horizontal edges, then

there is a 2-cell (a horizontal triangle) attached along γ.
(2) If γ ⊂ H(1) is a circuit composed of two horizontal edges and two

vertical edges, then there is a 2-cell (a vertical square) attached
along γ.
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(3) If γ ⊂ H(1) is a circuit composed of three horizontal edges and two
vertical ones, then there is a 2-cell (a vertical pentagon) attached
along γ, unless γ is the boundary of the union of a vertical square
and a horizontal triangle.

Remark 3.2: As the full subgraph of H(Γ) containing the vertices Γ(0) × {0} is
isomorphic to Γ, we may think of Γ as a subset of H(Γ).

Remark 3.3: Whenever H(Γ) is to be thought of as a metric space, we will
always implicitly ignore the 2-cells, and regard H(Γ)(1) as a metric graph with
all edges of length one.

Definition 3.4: Let Γ be a graph andH(Γ) the associated combinatorial horoball.
Define a depth function

D : H(Γ) → [0,∞)

which satisfies:

(1) D(x) = 0 if x ∈ Γ,
(2) D(x) = k if x is a vertex (v, k), and
(3) D restricts to an affine function on each 1-cell and on each 2-cell.

Definition 3.5: Let Γ be a graph and H = H(Γ) the associated combinato-
rial horoball. For N ≥ 1, let HN ⊂ H be the full sub-graph with vertex set
Γ(0) × {0, . . . , N}.

The following observation will be important in Section 10.

Observation 3.6: Let Γ be a graph, HN as in Definition 3.5 above, and ∂HN be
the full sub-graph with vertex set Γ(0) × {N}.

Let H′ = H(∂HN ). Identify the copies of ∂HN in HN and H′. The resulting
complex is isomorphic to H.

Proposition 3.7: Let Γ be a connected 1-complex so that no edge joins a ver-

tex to itself. Then H(Γ) is simply-connected and satisfies a linear combinatorial

isoperimetric inequality with constant at most 3.

Proof. Let c be a combinatorial loop in H(Γ). To prove the proposition it
suffices to show that c can be filled by a disk of area at most 3|c|1.

Let j be minimal so that there is some vertex (v, j) in c. Since we may clearly
suppose c has no backtracking, there is at least one horizontal edge at depth j
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in c. By gluing pentagons to edges in c at depth j, and squares when pentagons
are not possible, we can reduce the length of c, and increase the minimal depth.
Repeating this procedure, we eventually end up with a path of length 3, or 4,
which is entirely horizontal. A path of length 3 can be filled be a horizontal
triangle, whilst a path of length 4 can be filled by two pentagons beneath it.
Being slightly careful about counting shows that the isoperimetric constant is
at most 3, as required.

Theorem 3.8: Let Γ be any 1-complex. Then H(Γ)(1) is δ-hyperbolic, where

δ is independent of Γ.

Proof. This follows from Propositions 3.7 and 2.23.

Remark 3.9: By studying the geometry of geodesics in combinatorial horoballs
as in the results below, it is possible to directly prove that any combinatorial
horoball is 20-hyperbolic (and 20 is not optimal).

Geodesics in combinatorial horoballs are particularly easy to understand.

Lemma 3.10: Let H(Γ) be a combinatorial horoball. Suppose that x, y ∈ H(Γ)
are distinct vertices. Then there is a geodesic γ(x, y) = γ(y, x) between x and y

which consists of at most two vertical segments and a single horizontal segment

of length at most 3.

Moreover, any other geodesic between x and y is Hausdorff distance at most

4 from this geodesic.

Proof. Let γ′ be any geodesic joining x to y.
We observe that if h = [γ′(t1), γ′(t2)] is a maximal horizontal segment of

length greater than 1, then D(γ′(t1 − 1)) and D(γ′(t2 + 1)) are both smaller
than D(h) (see Figure 2). It is easy to see that no geodesic in A can contain a
horizontal segment of length longer than 5 (Figure 3). Indeed, the geodesic γ′

can contain at most 5 horizontal edges in total.
We next observe that there can be at most two horizontal segments in γ′

other than the one at maximal depth, at most one on each side of the deepest
one. In fact, there can be at most one horizontal segment other than the one
at maximal depth. Figure 4 shows representative paths with three horizontal
segments together with ways to shorten them (there are other possibilities,
which are easy to deal with).
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Figure 2. In a geodesic, a horizontal segment not at maximal
depth must have length 1.

Figure 3. A geodesic can contain no horizontal segment of
length greater than 5.

Let M ′ be the maximum depth achieved by γ′. There is a geodesic γ′′ ob-
tained from γ′ by pushing all horizontal segments of γ′ down to D−1(M ′). The
Hausdorff distance between γ′ and γ′′ is at most 1 1

2 . The geodesic γ′′ consists
of at most two vertical segments and one horizontal segment of length at most
5. If the horizontal segment h ⊂ γ′′ has length 4 (respectively 5) then there is
another path with the same endpoints as h, and the same length, consisting of
two vertical edges and a horizontal path of length 2 (respectively 3). Replacing
h with this new path if necessary, we obtain a geodesic of the form required by
the lemma.

Now let γ be any geodesic satisfying the conclusion of the lemma. We argue
that the Hausdorff distance between γ and γ′′ is at most 2 1

2 which, combined
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Figure 4. A path with three horizontal segments and a way to
shorten the path.

with the earlier estimate on the Hausdorff distance between γ′ and γ′′, completes
the proof.

Let M be the maximum depth of γ. The reader may readily verify that
0 ≤ M −M ′ ≤ 1. If M = M ′, then γ′′ lies within Hausdorff distance at most
11

2 of γ. If M = M ′ + 1, then the Hausdorff distance between γ(x, y) and γ′′ is
at most 2 1

2 .

Lemma 3.11: If A is a combinatorial horoball, then the Gromov boundary

consists of a single point, denoted eA. Moreover, for any x ∈ A, there is a

geodesic ray from x to eA consisting entirely of vertical edges. Any geodesic ray

from x to eA is Hausdorff distance at most 11
2 from the vertical ray.

Proof. A geodesic ray has at most one horizontal edge. Given this observation,
the proof is similar to that of Lemma 3.10.

3.2. The augmentation. Let G be a finitely generated group, with a finite
collection P of subgroups. Let S be a compatible generating set for G. We define
an augmentation of the relative Cayley graph complex of G by combinatorial
horoballs. This augmentation will be hyperbolic exactly when G is hyperbolic
relative to P (see Theorem 3.25).

Definition 3.12: Let G be a finitely generated group, let P = {P1, . . . , Pn} be a
(finite) family of finitely generated subgroups of G, and let S be a generating set
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for G so that Pi∩S generates Pi for each i ∈ {1, . . . , n}. For each i ∈ {1, . . . , n},
let Ti be a left transversal for Pi (i.e., a collection of representatives for left cosets
of Pi in G which contains exactly one element of each left coset).

For each i, and each t ∈ Ti, let Γi,t be the full subgraph of the Cayley graph
Γ(G,S) which contains tPi. Each Γi,t is isomorphic to the Cayley graph of Pi

with respect to the generators Pi ∩ S. Then we define

X = Γ(G,S) ∪ (∪{H(Γi,t)(1) : 1 ≤ i ≤ n, t ∈ Ti}),

where the graphs Γi,t ⊂ Γ(G,S) and Γi,t ⊂ H(Γi,t) are identified as suggested
in Remark 3.2.

Remark 3.13: The vertex set of X can naturally be identified with the set of
4-tuples (i, t, p, k), where i ∈ {1, . . . , n}, t ∈ Ti, p ∈ Pi, and k ∈ N.

We will use this identification without comment in the sequel.

Remark 3.14: The group G acts isometrically and properly on the graph
X(G,P, S).

A path in X starting at 1 determines an element of G in the following manner:
Each horizontal edge is naturally labelled by a group element. Take the product
of the labels of the horizontal edges in the path (and ignore the vertical edges)
with the order coming from the path.

Paths in quotients X/H, where H ≤ G, and also paths which start at a point
(i, 1, 1, k) lying directly ‘beneath’ 1 also naturally determine elements of G.

Supposing further that G is finitely presented relative to P, there is a natural
locally finite simply connected 2-complex with skeleton X(G,P, S):

Definition 3.15: Let G be a finitely generated group, let P = {P1, . . . , Pn} be a
(finite) family of finitely generated subgroups of G, and let S be a generating
set for G so that Pi ∩ S generates Pi for each i ∈ {1, . . . , n}. Let S′ = S \⋃P,
and suppose that

G = 〈A,P | R〉

is a finite relative presentation of G, in the sense of Definition 2.13 above (where
A ⊂ S). Then we may form a locally finite 2-complex X(G,P, S,R), whose
one-skeleton is the space X(G,P, S) from Definition 3.12, and which contains
the following 2-cells.
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• 2-cells from R: Each relator in R determines a loop γ in Γ(G,S) be-
ginning at 1. For each g ∈ G, there is a 2-cell attached along gγ.

• 2-cells from combinatorial horoballs: For each i and each t ∈ Ti we have
an embedding of H(Γi,t)(1) into X(G,P, S). If γ ∈ H(Γi,t) bounds a
2-cell, then there is a 2-cell attached along its image in X(G,P, S,R).

Remark 3.16: The 2-complex X can also be obtained from the relative Cayley
complex C(G,S,R) as in Definition 2.16 by attaching combinatorial horoballs
to the cosets gPi (including the 2-cells in the horoballs). In particular, and
this will be important several times throughout this paper, the relative Cayley
complex is canonically embedded in X.

As in Definition 3.4, we define a depth function for the space X(G,P, S,R):

Definition 3.17: A depth function is

D : X(G,P, S,R) → [0,∞)

and it satisfies:

(1) D(x) = 0 if x ∈ G;
(2) D(x) = n if x is a vertex (i, t, p, n);
(3) D is equivariant; and
(4) D restricts to an affine function on each 1-cell and on each 2-cell.

Remark 3.18: Because D is G-equivariant, it induces a depth function on the
quotient space X/H, for any subgroup H of G. We refer to the depth function
on the quotient by D also.

Remark 3.19: We observe that D−1(0) = Ĉ, the relative Cayley complex of G.

Remark 3.20: In Section 6, we need to choose R carefully. We will need all
sufficiently short loops in Ĉ to be able to be filled in Ĉ. This can be ensured
by including all of the short relations in G in R.

We remark that X naturally breaks up into Ĉ and an equivariant family of
combinatorial horoballs.

Definition 3.21: Let L > 0. An L-horoball is a component of D−1[L,∞). A
0-horoball is the maximal subcomplex of X(G,P, S,R) with vertices

tPi ∪ {(i, t, p, k) : p ∈ Pi, k ∈ N}



Vol. 168, 2008 RELATIVELY HYPERBOLIC DEHN FILLING 347

for some i ∈ {1, . . . , n} and some t ∈ Ti.

Remark 3.22: The space X is given the path metric, where each edge has length
1. We have not specified what kind of metric to put on the 2-cells. Thus,
whenever we are discussing the metric of X, we will simply pretend that X is a
1-complex. In particular, a geodesic in X will always refer to a geodesic path
in the 1-skeleton.

The purpose of the 2-cells is that we want a simply-connected space for which
we will prove a linear isoperimetric inequality. This will imply that X is a δ-
hyperbolic space for some δ, in case G is hyperbolic relative to P. See Theorem
3.25 below.

3.3. Notions of relative hyperbolicity. The main result of this subsec-
tion is Theorem 3.25, which gives a collection of statements which are equivalent
to relative hyperbolicity. In particular, G is hyperbolic relative to P if and only
if X(G,P, S) is Gromov hyperbolic for any appropriate choice of S as in Defi-
nition 3.12 above.

The next result will allow us to translate the hyperbolicity of the coned-off
Cayley complex into hyperbolicity of the space X. In order to make the proof
of Theorem 3.25 easier, we choose to phrase it in terms of linear homological
isoperimetric inequalities, though there is an analogous version with combina-
torial isoperimetric inequalities (and the proof of this analogue is somewhat
easier).

Theorem 3.23: Suppose that G is finitely presented relative to P, that S is a

finite generating set for G so that P = 〈S ∩ P 〉 for each P ∈ P, and suppose

that 〈S,P | R〉 is a finite relative presentation for G.

If the coned-off Cayley complex Ĉ(G,P, S,R) satisfies a linear homologi-

cal isoperimetric inequality, then X(G,P, S,R) satisfies a linear homological

isoperimetric inequality.

Proof. Let Γ = Γ(G,S) be the Cayley graph of G with respect to S. Let
Γ̂ = Γ̂(G,P, S) be the coned-off Cayley graph and Ĉ = Ĉ(G,P, S,R) the
coned-off Cayley complex.

By assumption, Ĉ satisfies a linear homological isoperimetric inequality. Let
K be the isoperimetric constant for Ĉ.

Take a 1-cycle c in X1. By Theorem 2.26, we may assume without loss of
generality that c is a simple loop. If the support of c lies entirely within a single



348 D. GROVES AND J. F. MANNING Isr. J. Math.

horoball, then c may be filled with a combinatorial disk of area at most 3|c|1,
by Proposition 3.7. Therefore, we may suppose that the support of c does not
lie entirely in a horoball.

Decompose c into pieces which lie in Γ, and pieces which lie entirely in a
single horoball.

For each maximal sub-path of c which lies in a horoball, there is a path of
length 2 in Γ̂ with the same endpoints. This gives a loop ĉ in Γ̂. Clearly |ĉ| ≤ |c|.

There is a rational 2-chain ω in Ĉ with boundary ĉ so that

|ω|1 ≤ K|ĉ|1.

Consider an infinite-valence vertex v ∈ γ̂, and the 2-cells in supp(ω) which
intersect v. Each such 2-cell is a triangle, and has a single edge in Γ. Thus to
each infinite valence vertex v in ĉ is associated (via the 2-chain ω) a 1-chain
pv whose support is contained in the link of v and whose 1-norm is exactly the
1-norm of ω restricted to the star of v.

The 1-chains pv (of which there are finitely many for the given path ĉ) have
total length bounded by |ω|1, and give a method of ‘surgering’ c. We have the
decomposition of c into paths qi in the Cayley graph and paths rv, where rv is
a path through a horoball corresponding to the infinite valence vertex v. This
induces a decomposition of c as

c =
∑

v

(rv + pv) +
( ∑

i

qi −
∑

v

pv

)
,

where the paths are oriented so that rv+pv is a 1-cycle, and so is (
∑

i qi−
∑

v pv).
Now,

|c|1 ≤
∑

v

|rv + pv|1 +
∑

i

|qi|1 +
∑

v

|pv|1 ≤ 2K|ĉ|1 + |c|1 ≤ (2K + 1)|c|1.

(The second inequality holds because
∑

v |pv|1 ≤ |ω|1, and
∑

v |rv|1+
∑

i |qi|1 =
|c|1.)

The 1-cycles rv + pv lie entirely in a horoball, and can be filled efficiently, as
described above (this follows from Theorem 2.26 and Proposition 3.7).

Therefore, it suffices to fill the 1-cycle c1 = (
∑

i qi −
∑

v pv) efficiently. The
1-cycle c1 has support entirely in the Cayley graph Γ. Therefore, c1 can be
interpreted as a 1-cycle in Γ̂. Hence there is a 2-chain ω1 in Γ̂ so that ∂ω1 = c1

and |ω1|1 ≤ K|c1|1.
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Let ω′1 be the 2-chain which is equal to ω1 on the Cayley complex, and equal to
zero on 2-cells adjacent to infinite valence vertices. Then ∂ω′1 decomposes into
a sum of c, and a collection of 1-cycles di each of which lies entirely on the link
of an infinite valence vertex. Also, |ω′1|1 ≤ |ω1|1, so |∂ω′1|1 ≤ M |ω′1|1 ≤ M |ω1|1,
where M is the maximum length of an attaching map of a 2-cell in Γ̂.

Since the support of ω′1 is entirely contained in the Cayley complex, it can
be considered as a 2-chain in X, whose boundary is the sum of c1 and a col-
lection of 1-cycles, di each of which lives entirely in a single parabolic coset.
Each di can be filled by a 2-chain νi whose support is entirely contained in the
appropriate combinatorial horoball, so that |νi|1 ≤ 3|di|1. We also have that∑

i |di|1 ≤ |∂ω′1|1, by choosing the di to have distinct supports (choose one di

for each parabolic coset).
Now, by choosing appropriate orientations, we have ∂(ω′1 +

∑
i νi) = c1. We

also have

|ω′1 +
∑

i

νi|1 ≤ |ω′1|1 +
∑

i

|νi|1 ≤ |ω1|1 + 3
∑

i

|di|1 ≤ K|c1|1 + 3|∂ω′1|1

≤ K|c1|1 + M |ω1|1 ≤ (KM + K)|c1|1.

This finishes the proof that X satisfies a linear homological isoperimetric in-
equality.

We state the combinatorial version of Theorem 3.23 below for completeness.
The proof is entirely analogous to that of Theorem 3.23 with loops playing the
part of 1-cycles and disks the part of filling 2-chains.

Theorem 3.24: Let G,P, S and R be as in the statement of Theorem 3.23

above.

If Ĉ(G,P, S,R) satisfies a linear combinatorial isoperimetric inequality with

constant K, then X(G,P, S,R) satisfies a linear combinatorial isoperimetric

inequality, and we can take the constant to be K1 = 3K(2K + 1).

The following is the main result of this section, and gathers together a few
notions of relative hyperbolicity, including some that are new in this paper.

Theorem 3.25: Suppose that G is a finitely generated group, P = {P1, . . . , Pn}
is a finite collection of finitely generated subgroups of G, G = 〈A,P | R〉 is a

finite relative presentation for G, and S is a compatible generating set containing

A.
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Let Γ̂ be the coned-off Cayley graph for Γ with respect to S and P, and let Ĉ

be the coned-off Cayley complex. Let X(G,P, S,R) be as defined in Definition

3.15 above. The following are equivalent:

(1) G is hyperbolic relative to P in the sense of Gromov;

(2) G is hyperbolic relative to P (i.e., Γ̂ is Gromov hyperbolic and fine);

(3) Ĉ satisfies a linear combinatorial isoperimetric inequality;

(4) Ĉ satisfies a linear homological isoperimetric inequality;

(5) X(1) is Gromov hyperbolic;

(6) X satisfies a linear combinatorial isoperimetric inequality;

(7) X satisfies a linear homological isoperimetric inequality.

Proof.

(5) +3

z£ }}
}}

}}
}

}}
}}

}}
}

(1) +3 (2)

®¶
(6) +3 (7)

KS

(4)ks (3)ks

The main result of [6] is that (1) implies (2) (cf. Remark 2.44). By Proposition
2.49, (2) implies (3).

By Lemma 2.29, (3) implies (4) and (6) implies (7).
By Theorem 3.23, (4) implies (7).
Now, (7) implies (5), by Theorem 2.30.
Proposition 2.22 gives that (5) implies (6), provided we can find a bound

on the area of fillings of short loops in X (where “short” means at most 16δ).
Any combinatorial loop in X of length at most 16δ which lies in a horoball can
be filled by a combinatorial disk of length 48δ, by Proposition 3.7. Up to the
G-action, there are only finitely many loops of length less than 16δ which do
not lie in a horoball. Since X is simply connected, these can all be filled, and
so there is some universal constant C(X) so that any loop in X of length less
than 16δ can be filled by a disk of area at most C(X).

It remains to observe that the space X satisfies the conditions of Definition
2.38, and so (5) implies (1).

Gathering together these implications, the theorem is proved.

3.4. Metric properties of X. We now suppose that G is hyperbolic relative
to P, and that X = X(G,P, S) as in Definition 3.12 (for the moment we are
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only concerned with the metric properties of X, and we restrict our attention
to the 1-complex version of X).

By Theorem 3.25, the graph X is δ-hyperbolic for some δ. We assume that
this δ satisfies the conditions of Remark 2.10

Lemma 3.26: If L > δ, the L-horoballs are convex in X.

Proof. Let H1 be a 1-horoball, and let HL be the L-horoball contained in H1.
We observe that HL is convex in H1 (where H1 is endowed with its path metric).
Thus if HL fails to be convex in X, then two points in HL are connected by a
geodesic which passes through D−1(0). Let p and q be two such points in HL,
chosen to have minimal distance from one another in the path metric on H1.
(Note that this distance must be at least 2L so that the geodesic between them
actually leaves H1. They must also satisfy D(p) = D(q) = L.) Choose another
point r ∈ HL so that max{dH1(p, r), dH1(q, r)} < dH1(p, q) and D(r) = L.
There are then X-geodesics [p, r] and [q, r] which lie entirely in HL, whereas
p and q are joined by a geodesic which includes points in D−1(0), i.e., points
which are of distance at least L from HL. Since the triangle formed by these
geodesics is δ-slim, this implies that L ≤ δ, a contradiction.

We extend the choice of geodesics in Lemma 3.10 to a choice of geodesics
between any two points in X.

Lemma 3.27: If G is torsion-free, then there is an antisymmetric, G-equivariant

geodesic bicombing γ on X, so that if x and y lie in the same L-horoball for

L > 2δ, then γ(x, y) is as described in Lemma 3.10.

Proof. Choose a complete set {oi} of representatives for the orbits of vertices of
X under the G-action. For each oi and each x ∈ X, choose a geodesic γ(oi, x)
as in Lemma 3.10. Extend equivariantly and antisymmetrically. Because G is
torsion free, there is no element of G which exchanges two points of X. Thus
equivariance and antisymmetry may coexist.

Remark 3.28: We say the bicombing in Lemma 3.27 is ‘antisymmetric’ because
we consider paths to be maps. If paths are considered as subsets, it would be
symmetric. We will sometimes blur this distinction, but it will not introduce
any confusion. For more about the parametrizations of the bicombing, see
Paragraph 5.1.1.
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When we define the homological bicombing in Section 6, it will be antisym-
metric, of course.

Remark (about torsion) 3.29: If G is not torsion-free, then there may be no
bicombing as in Lemma 3.27, because of the possible presence of 2-torsion. The
way to proceed in the presence of torsion is to let γ(x, y) be the collection of all
of the geodesics between x and y. This makes a number of the arguments later
in this paper more awkward. At times it is also useful to consider the “average”
of all of the geodesics between x and y.

The following is a slight generalization of the usual notion of cone types.

Definition 3.30 (Cone types): Suppose that G is a group, that Ξ is a graph
equipped with a free G-action and that x ∈ Ξ is a vertex.

For a combinatorial path γ : I → Ξ, let [γ] denote the G-orbit of γ. If v is a
vertex in Ξ, the cone type of v viewed from x is the collection of classes [γ]
of paths for which

(1) there exists g ∈ G so that g · γ(0) = v; and
(2) d(x, g · γ(1)) = d(x, v) + |γ|.

Note that if v1 and v2 have the same cone type then, in particular, v1 and v2

lie in the same G-orbit.

In case Ξ is the Cayley graph of a finitely generated group G, and x = 1,
the above definition is equivalent to the usual notion of cone types (see [5,
III.Γ.2.16], for example).

The following result follows directly from the proof of [5, Theorem III.Γ.2.18].

Lemma 3.31: Let G be a finitely generated group acting freely on the locally

compact δ-hyperbolic graph Ξ, and suppose that x ∈ Ξ is a vertex. Each orbit

of vertices in Ξ contains only finitely many cone types viewed from x.

Lemma 3.32: Suppose that G is hyperbolic relative to P = {P1, . . . , Pn}, where

no Pi is equal to G. Suppose further that S is a compatible generating set for G

with respect to P, and that X = X(G,P, S) is δ-hyperbolic. Finally, suppose

that diam(Γ(Pi, S ∩ Pi)) ≥ 215δ+1 for each i.

For each L > 0 there exists a 10δ-local geodesic γ ⊂ X of length at least L

so that γ does not intersect any (15δ + 1)-horoball in X.
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Proof. Proceed as follows. Let H1 and H2 be distinct 10δ-horoballs in X. Let
ν be a shortest path between H1 and H2. Note that the length of ν is at least
20δ.

Let x = ν ∩ H1. For some i, some t ∈ Ti and some p ∈ Pi, we have x =
(i, t, p, 10δ). By hypothesis, there exists q ∈ Pi so that the distance in Γ(Pi, S ∩
Pi) between p and q is exactly 215δ+1. This implies that the geodesic γ(x, y)
between x and y = (i, t, q, 10δ) intersects D−1(15δ) but not D−1(15δ +1). This
geodesic consists of two vertical segments, and a single horizontal segment of
length 2.

Let ν′ = qp−1 · ν. Our 10δ-local geodesic segment is then constructed as
follows: Start with ν, followed by γ(x, y). Then take ν′ to the 10δ-horoball
H3 = qp−1H2. From the endpoint x′ of ν′ in H3, construct a a path γ(x′, y′)
exactly as above (see Figure 5). Continue in this manner. This construction can

H2

y

H3

x′′

H1

x

x′ y′

Figure 5. How to make an arbitrarily long 10δ-local geodesic
which stays in the “thick” part of X.

be iterated as many times as necessary to ensure the path has at least length L,
and it is not difficult to see that the ensuing path is a 10δ-local geodesic (note
that the path ν, and its translates, must begin and end with a vertical path of
length 10δ, since it is a shortest path between horoballs).

Theorem 3.33: Suppose that G is hyperbolic relative to P = {P1, . . . , Pn},
where no Pi is equal to G. Suppose further that S is a compatible generating
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set for G with respect to P, and that X = X(G,P, S) is δ-hyperbolic. Finally,

suppose that diam(Γ(Pi, S ∩ Pi)) ≥ 215δ+1 for each i.

Then there exists a hyperbolic element g ∈ G which has an axis γ ∈ X so

that γ ⊂ D−1[0, 19δ].

Proof. Let K19δ be the total number of cone types of all points in D−1[0, 19δ]
as viewed from 1 ∈ X.

Let σ be a 10δ-local geodesic of length longer than 7
3 (K19δ)+2δ as in Lemma

3.32. In particular, σ does not penetrate any (15δ +1)-horoball. By translating
σ by an element of G, we suppose that σ begins at 1 ∈ X.

By [5, Theorem III.H.1.13(1)], any 10δ-local geodesic is contained in the 2δ-
neighborhood of any geodesic joining the endpoints. A simple argument then
shows that in fact the geodesic is contained in the 4δ-neighborhood of the k-
local geodesic. Also, any 10δ-local geodesic is a ( 7

3 , 2δ)-quasi-geodesic (by [5,
Theorem III.H.1.13(3)]).

Let ρ be a geodesic segment joining the endpoints of σ. We have ensured that
the length of ρ is greater than K19δ, that ρ does not intersect any (19δ + 1)-
horoball, and that ρ starts at 1. 3

Therefore, there exist vertices v1, v2 ∈ ρ which have the same cone type as
viewed from 1. Suppose that v1 occurs before v2 on ρ. Let ρ1 be the subpath
of ρ from the 1 to v1, let ρ2 be that part between v1 and v2, and let ρ3 be the
remainder of ρ.

Since v1 and v2 have the same cone type, they are in the same G-orbit. Let
g ∈ G be so that g.v1 = v2. Since ρ1ρ2ρ3 is a geodesic, and v1 and v2 have the
same cone type as viewed from 1, the path ρ1ρ2(g · ρ2)(g · ρ3) is also a geodesic.

In turn, this implies that ρ1ρ2(g · ρ2)(g2 · ρ2)(g2 · ρ3) is a geodesic.
Iterating this argument, we see that the path

ρ2(g · ρ2)(g2 · ρ2) · · · ,

is a geodesic ray, starting at v1. Denote this ray by r. Note that r ⊂ g−1 · r.
Let γ be the union of the paths g−i · r as i → ∞, parametrized in the obvious
way. This is a bi-infinite geodesic line, contained in D−1[0, 19δ], upon which g

acts by translation.

3 The following argument is very similar to that of [5, Proposition III.Γ.2.22].
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Theorem 3.34: Suppose that G is hyperbolic relative to P = {P1, . . . , Pn},
that G 6= Pi for each i and that P1 is infinite. Then G is non-elementary

relatively hyperbolic.

Proof. Suppose first that some parabolics are finite. Let X ′ be the space ob-
tained from Definition 3.12 using all of the parabolics, and X the space obtained
using only the infinite parabolics. Up to quasi-isometry, X ′ is X with a locally
finite collection of rays attached to the cosets of the finite parabolics. In partic-
ular, X is Gromov hyperbolic if and only if X ′ is. Moreover, an element g ∈ G

acts hyperbolically on X ′ if and only if it acts hyperbolically on X.
Therefore, we are free to assume that all of the parabolic subgroups of G are

infinite.
Let γ be the geodesic from Theorem 3.33, which is an axis of a hyperbolic

element g ∈ G. Let γ+ and γ− be the points in ∂X at either end of γ.
Let H be a 25δ-horoball in X, and let eH be the point in ∂X coming from H.

Consider an ideal geodesic triangle, T , with vertices γ−, γ+ and eH , and edge
γ between γ− and γ+. Suppose furthermore, that the geodesics with endpoint
eH are vertical after depth 2δ. By Lemma 2.11, this triangle is 3δ-slim.

The triangle T intersects H ∩ D−1(25δ) in a pair of points {x+, x−} which
are at most 3δ apart. Since the parabolic P which stabilizes H is infinite, there
exists p ∈ P so that dX({p · x−, p · x+}, {x−, x+}) ≥ 10δ.

Now, pT is another ideal triangle, with one vertex eH and the opposite side
an axis for pgp−1. We claim that Fix∂X(g) ∩ Fix∂X(pgp−1) = ∅.

An easy argument shows that the Hausdorff distance between two geodesics
with the same endpoints at infinity is at most 2δ.

Suppose, for instance, that p · γ+ = γ−. Then the fact that the geodesics
from p · γ+ to eH and from γ− to eH are vertical below the 2δ level of H, easily
implies that dX(p · x+, x−) ≤ 4δ, in contradiction to the choice of p.

Thus, the elements g and pgp−1 are hyperbolic elements with disjoint fixed
sets in ∂X, and G is non-elementary relatively hyperbolic, as required.

3.5. Constants. By virtue of Theorem 3.25, we may assume that X(G,P, S)
is δ-hyperbolic for some δ; we are free to assume that δ is an integer and that
δ ≥ 100. It is useful to have a few different scales to work at, and so we choose
the following constants. The choices made will be justified by the results of the
subsequent sections.
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Definition 3.35: We set K = 10δ, L1 = 100K, and L2 = 3L1.

We have made no attempt to make this choice of constants optimal.

4. Convex sets and betweenness

In this section we prove a theorem about collections of convex sets in an ar-
bitrary proper Gromov hyperbolic space. The construction in this section is
crucial to the construction of preferred paths in the next section. In turn,
preferred paths are the key to our construction of the bicombing in Section 6.

Definition 4.1: Let Υ be a geodesic metric space. A collection G of convex sets
is N-separated if for all A,B ∈ G the distance between A and B is at least N .

The elements of G will be called globules.
Let Isom(Υ;G) be the collection of all isometries g of Υ so that for all A ∈ G

we have gA ∈ G.

Throughout the remainder of this section, we will suppose that G is a 50δ-
separated collection of convex subsets of a δ-hyperbolic space Υ.

Remark 4.2: In subsequent sections of this paper, we will apply the results of
this section in case Υ = X(G,P, S,R) and G is the collection of all L1-horoballs
in X.

Another interesting example is Hn with some collection of (sufficiently sep-
arated) horoballs. It is worth remarking that the existence of a function D∞
satisfying the properties (A1)–(A7) below is not obvious even in the case of
horoballs in Hn.

The main purpose of this section is to define, for any pair of points a, b ∈ Υ,
a family of globules D∞a,b, which will be the collection of globules which are
‘between’ a and b (in case a is contained in a globule A we will have A ∈ D∞a,b

for all b). We want our collections D∞a,b to satisfy various conditions, listed as
Axioms (A1)-(A7) below. Most of these are quite straightforward to ensure but
Axioms (A5)–(A7), the most important for the applications, are much more
difficult to guarantee.

Remark 4.3: The construction performed in this section can be done if the
globules are only quasi-convex. How far the globules must be separated depends
on the constants of quasi-convexity.
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The following two lemmas will be useful:

Lemma 4.4: If C is a convex subset of Υ then for any R ≥ 0, the set NR(C) is

δ-quasi-convex.

Lemma 4.5: Let A, B be disjoint closed δ-quasi-convex sets in the proper δ-

hyperbolic space Υ. Let a, a′ ∈ A, and b, b′ ∈ B. If q is a geodesic between a

and b, and q′ a geodesic between a′ and b′, then q′ lies in the 3δ-neighborhood

of A ∪B ∪ q.

Moreover, for any 4δ < R < 1
2d(A, B), the Hausdorff distance between the

(nonempty) sets q rNR(A ∪B) and q′ rNR(A ∪B) is at most 5δ.

Proof. Let [a, a′] be any geodesic between a and a′, and let [b, b′] be any geodesic
between b and b′; since A and B are δ-quasi-convex, [a, a′] ⊂ Nδ(A) and [b, b′] ⊂
Nδ(B). Consider the quadrilateral [a, a′] ∪ q ∪ [b, b′] ∪ [b, a′], pictured in Figure
6. Since Υ is δ-hyperbolic, this quadrilateral is 2δ-slim. In particular, if x is

a b

a′ b′

A Bq

q′

Figure 6. Tube lemma.

any point on q′, then

x ∈ N2δ ([a, a′] ∪ q ∪ [b, b′]) ⊂ N3δ (A ∪ q ∪B) .

For the second assertion of the lemma, let R be as in the statement; since
R < 1

2d(A,B), the set q r NR(A ∪ B) is non-empty. Let x ∈ q r NR(A ∪ B).
We must show that

d(x, q′ rNR(A ∪B)) ≤ 5δ.

As above, there is a point x′ ∈ [a, a′] ∪ q′ ∪ [b, b′] so that d(x, x′) ≤ 2δ. Since
R > 3δ, and x is at least R from A ∪ B, the point x′ must be on q′. If x′ is
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outside the R-neighborhood of A ∪ B, then we are done, so suppose without
loss of generality that x′ lies in NR(A).

Let y be the point on q′ which is distance exactly R from A. Let t be a point in
A with d(y, t) = d(y, A) = R. Consider the geodesic triangle pictured in Figure
7 with vertices s, t, and y. This triangle is δ-thin and the geodesic between s and

q′

q

A

s

t

x

y

x′

Figure 7. Tube lemma.

t is contained in Nδ(A). Since d(x,A) ≥ R, we have d(x′, A) ≥ R− 2δ > 2δ, so
x′ cannot be as close as δ to the geodesic between s and t; thus there is a point
z on the geodesic between y and t so that d(x′, z) ≤ δ and d(z, y) = d(x′, y).
We have

d(z, A) ≥ d(x′, A)− δ ≥ R− 3δ,

and so d(z, y) ≤ 3δ; this implies d(x′, y) = d(z, y) ≤ 3δ. Finally, d(x, y) ≤
d(x, x′) + d(x′, y) ≤ 5δ, and the lemma is proved.

Remark 4.6: The assumptions of Lemma 4.5 can be weakened. At the cost of
a slightly more complicated proof, the assumptions of ‘closed’ and ’proper’ can
be removed.

However we will only ever use Lemma 4.5 exactly as it is stated.

Definition 4.7: For a, b ∈ Υ, let α(a, b) be the set of all geodesics between a and
b.
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Definition 4.8: Suppose that a, b ∈ Υ. Let C0(a, b) denote the set of globules
which intersect some element of α(a, b) nontrivially.

For any R let CR(a, b) denote the set of globules P so that for every γ ∈ α(a, b)

NR(P ) ∩ γ 6= ∅.

Since bigons are δ-thin, C0(a, b) ⊆ CK(a, b) for all a, b ∈ Υ. (Recall K = 10δ.)

Remark 4.9: For a geodesic γ in Υ, the set of globules P ∈ G so that
N2K(P ) ∩ γ 6= ∅ inherits a natural order by projection to the geodesic. This
is because globules lie at least 50δ = 5K apart from each other. This induces
an order on C2K(a, b) for each a, b ∈ Υ and each γ ∈ α(a, b); this order is
independent of γ.

Note that if C2K(a, b) intersects C2K(c, d) nontrivially, then the order on the
intersection inherited from C2K(c, d) will either coincide with the order inherited
from C2K(a, b) or with its reverse.

For any a, b ∈ Υ, there are only finitely many elements of CK(a, b): the size
is bounded by 1

K d(a, b) + 1.
Let OG be the set of totally ordered finite subsets of G
Thus we have functions

C0 : Υ×Υ → OG ,

and

CK : Υ×Υ → OG .

Note that the action of Isom(Υ;G) on G induces an action on OG and that C0

and CK are equivariant with respect to this action. (Note also that the same
subset appears many times in OG , once for each possible total order on the
subset. By Remark 4.9, only two of these orders actually appear in the image
of C0 or CK .)

For a function

C : Υ×Υ → OG ,

we will denote C(a, b) by Ca,b. In the properties (A1)–(A6) defined below, the
symbol “⊂” is used to denote “ordered subset”, not just “subset”.
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We will use the following notation for subintervals: Let a, b ∈ Υ. If A and B

are contained in Ca,b then

Ca,b[A,B] = {Y ∈ Ca,b : A ≤ Y ≤ B},
Ca,b(a,A] = {Y ∈ Ca,b : Y ≤ A}, and

Ca,b[A, b) = {Y ∈ Ca,b : A ≤ Y }.

Here are some useful conditions C might satisfy:

(A1) For all a, b ∈ Υ, C0
a,b ⊆ Ca,b;

(A2) For all a, b ∈ Υ, Ca,b ⊆ CK
a,b;

(A3) For all a, b ∈ Υ, Ca,b = (Cb,a)op;
(A4) C is Isom(Υ;G)-equivariant.
(A5) If A,B ∈ Ca,b∩Cc,d for some a, b, c, d ∈ Υ and A,B ∈ G then Ca,b[A,B] =

Cc,d[A,B];
(A6) If A ∈ Ca,b ∩ Ca,c for some a, b, c ∈ Υ and A ∈ G then Ca,b(a,A] =

Ca,c(a,A].
(A7) If A ∈ Ca,b ∩ Cc,b for some a, b, c ∈ Υ and A ∈ G then Ca,b[A, b) =

Cc,b[A, b).

Note that Axiom (A7) follows from (A6) and (A3).
The purpose of this section is to find a function D∞ which satisfies all seven

of the axioms (A1)–(A7). For the application in the next section, (A5)–(A7)
are the most important. They are also the most difficult to ensure, although
our definition of D∞ in Definition 4.11 below is designed to make (A5)–(A7) as
apparent as possible.

The approach to constructing D∞ is as follows. We start with C0 with the
order as in Remark 4.9 and observe:

Lemma 4.10: The function C0 satisfies (A1)–(A4)

For a pair a, b ∈ Υ, the final D∞a,b will come from the preliminary C0
a,b by

adding new elements in order to make (A5)–(A7) hold. It is not at all obvious
that enforcing (A5)–(A7) whilst retaining (A1)–(A4) is possible. This is the
content of the proof of Theorem 4.12 below.

By (A2), all of the elements of D∞a,b must lie in CK
a,b.

Below we define a filtration of D∞, which will be the minimal (in the obvious
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sense of the word minimal) possible function satisfying (A1)–(A7). Before giving
the definition, consider the possible ways that (A5)–(A7) might fail to hold for
some Ca,b. Either (A5) fails (in the “middle” of Ca,b; see Figure 8), (A6) fails
(on the “left”; see Figure 9) or (A7) fails.

H

A B

d
c

b
a

Figure 8. Failure of (A5).

a

H

A

b

d

Figure 9. Failure of (A6).

Definition 4.11 below can be thought of in the following way: Start with C0,
and “fix” every failure of axiom (A5)–(A7); after doing these repairs you will
have obtained D1, which still does not satisfy (A5)–(A7). Repairing D1 yields
D2, and so on.
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Definition 4.11: For any pair a, b ∈ Υ, we make the following definitions: Let
D0

a,b = C0
a,b, and define inductively, for i ≥ 0:

Mi
a,b =

⋃

c,d∈Υ

( ⋃

A<B∈Di
a,b∩Di

c,d

Di
c,d[A, B]

)
,

Li
a,b =

⋃

d∈Υ

( ⋃

A∈Di
a,b∩Di

a,d

Di
a,d(a,A]

)
,

Ri
a,b =

⋃

c∈Υ

( ⋃

A∈Di
c,b∩Di

a,b

Di
c,b[A, b)

)
, and

Di+1
a,b = Di

a,b ∪Mi
a,b ∪ Li

a,b ∪Ri
a,b.

Finally, we define

D∞a,b =
∞⋃

i=1

Di
a,b.

Notice that the set Mi
a,b fixes the failure of (A5) for Di

a,b, and so on.
The following is the main result of this section, which will allow us to define

preferred paths in the next section.

Theorem 4.12: Suppose that G is a 50δ-separated collection of convex subsets

of a δ-hyperbolic space Υ. Then the function D∞ as defined in Definition 4.11

satisfies the axioms (A1)–(A7).

Definition 4.11 is tailored so as to make (A5)–(A7) as apparent as possible
(once it is known that D∞ satisfies (A2), (A5)–(A7) are immediate). As ex-
plained below, the hard part of proving Theorem 4.12 is Axiom (A2). We will
proceed by induction. On their own, Axioms (A1)–(A4) for Di do not seem
strong enough to imply Axioms (A1)–(A4) for Di+1. In order for the inductive
proof to work, we need to impose further conditions, which are encapsulated in
the following definitions.

Definition 4.13: Let a, b ∈ Υ and C ∈ Dn
a,b with a, b 6∈ C. A pair of (n, a, b)-

guards of C is a pair (Z, W ) (each of which may be either a point or a globule)
so that there exists x, y ∈ Υ for which:

(1) C ∈ C0
x,y;

(2) Either Z = a = x or Z ∈ CK
x,y ∩ Dn

a,b and Z < C; and
(3) Either W = b = y or W ∈ CK

x,y ∩ Dn
a,b and W > C.
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We inductively define (n, a, b)-sentinels of C by saying that (n, a, b)-guards
of C are (n, a, b)-sentinels of C and that if D is an (n, a, b)-sentinel of C then
any (n, a, b)-guards of D are (n, a, b)-sentinels of C.

Remark 4.14: For any n, a, b and C as in Definition 4.13, (n, a, b)-guards of C

come in pairs (one to the left of C and one to the right). A single (n, a, b)-guard
may occur in many pairs.

We also remark that for any n ≥ 0, any a, b ∈ Υ and any C ∈ G, a pair of
(n, a, b)-guards of C is also a pair of (n + 1, a, b)-guards of C.

We now introduce the property which will form the inductive hypothesis in
the proof of Theorem 4.12.

Definition 4.15: Given an integer n ≥ 0, a pair a, b ∈ Υ and a globule C ∈ G we
let Bn(a, b; C) be the conjunction of the following three statements:

(1) C ∈ Dn
a,b;

(2) C ∈ CK
a,b; and

(3) either (i) C has a pair of (n, a, b)-guards; (ii) a ∈ C; or (iii) b ∈ C.

Lemma 4.16: For any n ≥ 0, any a, b ∈ Υ and any C ∈ G, if Bn(a, b; C) holds

then Bn+1(a, b; C) also holds.

Definition 4.17: Let a, b ∈ Υ and C, D ∈ G. Suppose that γ ∈ α(a, b) and that
γ intersects both Nβ(C) and Nβ(D) nontrivially for some β ≤ 2K. Suppose
also that C < D in the order on C0

a,b as in Remark 4.9.
Let y be the last point on γ in Nβ(C) and z the first point on γ in Nβ(D).

Define

γβ(C, D)

to be the subsegment of γ between y and z.

Proof of Theorem 4.12. Axiom (A4) is obvious. The (unordered) set theoretic
parts of (A1) and (A3) are also obvious. The set theoretic part of (A2) is the
key: By Remark 4.9, this gives sense to (and implies) all the statements about
ordered sets. Axioms (A5)–(A7) will then follow from the construction. Axiom
(A2) follows from the following inductive statement:

Claim 4.18: For i ≥ 0, all a, b ∈ Υ and all C ∈ G the following are equivalent:

(1) C ∈ Di
a,b;
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(2) Bi(a, b;C) holds, and Bi(a, b; D) holds whenever D is an (i, a, b)-sentinel
of C.

Note that for any i ≥ 0, any a, b ∈ Υ and any C ∈ G, the statement “(2)
implies (1)” holds tautologically (by Statement 4.15.(1)).

We will prove Claim 4.18 by induction on i.
Base Case: For any a, b ∈ Υ and C ∈ G, if C ∈ D0

a,b, then B0(a, b; C).
Moreover, whenever D is an (0, a, b)-sentinel of C, B0(a, b; D) holds.

Proof (Base case). Suppose C ∈ D0
a,b. If a ∈ C or b ∈ C, then the result is

immediate. Thus we may suppose that a, b 6∈ C.
Statement 4.15.(1) holds by assumption.
Statement 4.15.(2) holds because D0

a,b = C0
a,b ⊆ CK

a,b.
Statement 4.15.(3) holds because (a, b) form a pair of (0, a, b)-guards of C.
Now suppose that D is a (0, a, b)-sentinel of C. This implies that D ∈ D0

a,b

and the same argument applies.

Inductive Hypothesis: Fix n ≥ 1. For any 0 ≤ i < n, any a, b ∈ Υ and
any C ∈ G if C ∈ Di

a,b, then Bi(a, b; C) is true and Bi(a, b; D) holds for any
(i, a, b)-sentinel D of C.

Inductive step: Consider a, b ∈ Υ and C ∈ G and suppose that C ∈ Dn
a,b.

We wish to prove that Bn(a, b; C) holds and that Bn(a, b; D) holds for any
(n, a, b)-sentinel D of C.

Observe that if D is an (n, a, b)-sentinel of C, then it is in particular in Dn
a,b.

Therefore since C ∈ Dn
a,b was arbitrary, it suffices to prove that Bn(a, b;C)

holds.
By Definition 4.11, one of four situations must occur:

(1) C ∈ Dn−1
a,b ;

(2) C ∈Mn−1
a,b ;

(3) C ∈ Ln−1
a,b ; or

(4) C ∈ Rn−1
a,b .

We deal with each of these situations in turn.
Case 1: In this case Bn−1(a, b;C) holds by induction, and by Lemma 4.16

Bn(a, b; C) also holds.
Case 2: Suppose that C 6∈ Dn−1

a,b but that C ∈Mn−1
a,b .

Therefore, there are c, d ∈ Υ and A,B ∈ G so that

(1) A,B ∈ Dn−1
a,b ∩ Dn−1

c,d , and



Vol. 168, 2008 RELATIVELY HYPERBOLIC DEHN FILLING 365

(2) C ∈ Dn−1
c,d [A,B].

We wish to show that Bn(a, b; C) holds. Statement 4.15.(1) is clear.
We now prove Statement 4.15.(2) of Bn(a, b;C).
Since C ∈ Dn−1

c,d , the statement Bn−1(c, d;C) holds by the inductive hy-
pothesis, as does Bn−1(c, d; D) for any (n − 1, c, d)-sentinel D of C. Note that
A < C < B, so c, d 6∈ C and C has a pair of (n − 1, c, d) guards Z and W , by
property Bn−1(c, d; C).(3). Suppose that x, y ∈ Υ are the points associated to
C, Z and W from Definition 4.13.

Z
W

A
B

C

x

c

a

b

d

y

Figure 10. Case (2).

We now define globules P and Q. In case Z = x = c, let P = A. Otherwise,
Z and A are both globules in Dn−1

c,d and we let P = max{A,Z} with respect
to the order on Dn−1

c,d . Similarly, if W = y = d, then Q = B and otherwise
Q = min{B,W}, see Figure 10. In the figure, P = Z and B = Q, and they are
all globules.

Claim 1: P, Q ∈ CK+5δ
x,y .

We only consider P , as the argument for Q is identical. If P = Z, then
Z ∈ CK

x,y ⊆ CK+5δ
x,y .

Thus suppose that P = A and that A 6= Z. There are now two cases,
depending on whether Z = x = c or not.

If Z = x = c, let β5δ,K+5δ
x,y (Z,C) denote that portion of βx,y between the last

point in N5δ(Z) and the first point in NK+5δ(C), and define β5δ,K+5δ
x,y (Z, C)

similarly. Note that if NK+5δ(A) and N5δ(x) are not disjoint, then A = P
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is certainly contained in CK+5δ
x,y . Otherwise, since the singleton {Z} = {x} is

convex, Lemma 4.5 implies that the Hausdorff distance between β5δ,K+5δ
x,y (Z, C)

and β5δ,K+5δ
x,y (Z, C) is at most 5δ. But A ∈ Dn−1

c,d , so by the inductive hypothesis
A ∈ CK

c,d. Therefore, βx,y passes within K +5δ of A = P , as required, see Figure
11.

A
Z = c = x

C
βx,y

βc,d

Figure 11. Claim 1, in case Z = x = c. Dotted lines indicate
NK(Z) and NK(C).

Suppose then that Z 6= x or Z 6= c. Then Z is a globule and is separated
from A by at least L1. By Lemma 4.5 again, the Hausdorff distance between
βK+5δ

c,d (Z, C) and βK+5δ
x,y (Z, C) is at most 5δ. Once again we know by induction

that A ∈ CK
c,d, which proves that βx,y passes within K + 5δ of A, see Figure 12.

This proves Claim 1.

Z

A

C

βx,y

βc,d

Figure 12. Claim 1, in case Z is not x and c. Dotted lines
indicate NK(Z) and NK(C).

Claim 2: P, Q ∈ CK+5δ
a,b .
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Once again, we only consider P , as the argument for Q is identical.
If P = A, then P ∈ Dn−1

a,b so by induction we have Bn−1(a, b; P ) and P ∈
CK

a,b ⊆ CK+5δ
a,b .

Suppose then that P = Z and that Z 6= A (this is depicted in Figure 10).
Certainly we also have Z 6= B.

We know that A,B ∈ Dn−1
a,b ∩ Dn−1

c,d so by the inductive hypothesis A, B ∈
CK

a,b ∩ CK
c,d.

Let βa,b ∈ α(a, b) and βc,d ∈ α(c, d) be arbitrary. Then βa,b and βc,d pass
within K of both A and B. Since P = Z is an (n−1, c, d)-guard of C, and c 6= Z

we know P ∈ Dn−1
c,d and so by another application of the inductive hypothesis

P ∈ CK
c,d. Therefore βc,d passes within K of P .

By Lemma 4.5, the Hausdorff distance between βK+5δ
c,d (A,B) and βK+5δ

a,b (A, B)
is at most 5δ. Thus, βa,b passes within K +5δ of P , proving Claim 2 (see Figure
13).

βa,b

βc,d

A B

Z

Figure 13. Claim 2, in case A < Z. Dotted lines indicate
NK(A) and NK(B).

Note that whatever P and Q are, we always have P < C < Q. Since
P, Q ∈ CK+5δ

a,b ∩CK+5δ
x,y , Lemma 4.5 implies that the Hausdorff distance between

βK+10δ
a,b (P, Q) and βK+10δ

x,y (P,Q) is at most 5δ. Since βK+10δ
x,y (P, Q) intersects

C, the geodesic βa,b passes within 5δ of C (Figure 14). This proves Statement
4.15.(2) of Bn(a, b;C).

We now prove Statement 4.15.(3) of Bn(a, b; C). We claim that P and Q

form a pair of (n, a, b)-guards of C. It is certainly true that P < C < Q, and
that keeping the same x and y we still have C ∈ C0

x,y. Note that P and Q are
globules. Thus we have to prove

(1) P, Q ∈ Dn
a,b; and

(2) P, Q ∈ CK
x,y.
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βa,b

P
C

βx,y

Q

Figure 14. Case (2), Statement 4.15.(2). Dotted lines indicate
NK+5δ(P ) and NK+5δ(Q).

Once again, we prove these statements for P , the arguments for Q being
analogous.

Suppose that P = A. Then P ∈ Dn−1(a, b) ⊆ Dn
a,b. Otherwise, P = Z and

A < P < B. Therefore P ∈ Dn−1
c,d [A,B], which implies, by the definition of Dn,

that P ∈Mn−1
a,b ⊆ Dn

a,b. This proves Statement 1 above.
We now prove Statement 2. If P = Z, then P ∈ CK

x,y, so we are done. Thus
suppose that P = A, and Z < A.

We know that A ∈ Dn−1(c, d). Certainly, A < C so d 6∈ A. Suppose that
c ∈ A. This forces Z = x = c, by Definition 4.13, so x ∈ A and A ∈ C0

x,y ⊆ CK
x,y.

Suppose now that c 6∈ A. Then the inductive hypothesis and property
Bn−1(c, d; A) imply that A has a pair of (n − 1, c, d)-guards, which we denote
ZA and WA, and an associated pair of points xA, yA ∈ Υ, as in Definition 4.13.

We know that A ∈ C0
xA,yA

and that

(1) either c = xA = ZA or ZA ∈ CK
xA,yA

∩ Dn−1
c,d ; and

(2) either d = yA = WA or WA ∈ CK
xA,yA

∩ Dn−1
c,d .

In case ZA is a globule, we have ZA < A, and in case WA is a globule we
have A < WA (see Figure 15).

We now define PA, which may be either a point or a globule. In case Z =
x = c, define PA = ZA (which may be either a point or a globule). In case Z

is a globule, we consider whether ZA is a point or a globule. If ZA is a point,
then PA = Z. Otherwise PA = max{Z, ZA}. Note that if Z is a globule, so is
PA.
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A
βc,d

Z C

WAZA

βxA,yA

βx,y

Figure 15. Case (2), Statement 4.15.(3) (one of many possible arrangements).

We also define a globule QA. If WA = yA = d, then QA = C. If WA is a
globule, then QA = min{WA, C}.

Claim 3: If PA is a globule, then PA ∈ CK+5δ
xA,yA

∩ CK+5δ
x,y . In any case QA ∈

CK+5δ
xA,yA

∩ CK+5δ
x,y .

The proof of this is similar to those of Claims 1 and 2.
Let βxA,yA

be any geodesic between xA and yA. In case PA is a globule, Claim
3 and Lemma 4.5 imply that the Hausdorff distance between βK+10δ

xA,yA
(PA, QA)

and βK+10δ
x,y (PA, QA) is at most 5δ. Since PA < A < QA and βxA,yA

intersects
A, the path βx,y passes within 5δ of A. Thus in this case P = A ∈ CK

x,y,as
required.

Suppose that PA is a point (see Figure 16). In this case, Z = x = c and
ZA = x = xA, so PA = x = xA. In case N5δ(PA) and A are not disjoint, x lies
within 5δ of A, and certainly A ∈ CK

x,y. Otherwise, the singleton {x} is convex
so Lemma 4.5 implies that the Hausdorff distance between those parts of βx,y

and βxA,yA between N5δ(x) and NK+5δ(C) are at Hausdorff distance at most
5δ from each other. Since A ∈ C0

xA,yA
this implies once again that P = A ∈ CK

x,y

as required.
This finally proves that P and Q form a pair of (n, a, b)-guards of C, and

finishes the proof of Case (2).
Case 3: Suppose that C 6∈ Dn−1

a,b ∪Mn−1
a,b , but that C ∈ Ln−1

a,b .
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A
βc,d

C

WA

βx,y

PA = ZA = c = x = xA = Z

βxA,yA

Figure 16. Case (2), Statement 4.15.(3) (another of many pos-
sible arrangements).

Therefore, there is d ∈ Υ and A ∈ Dn−1
a,b ∩ Dn−1

a,d so that C ∈ Dn−1
a,d (a,A].

We are required to show that Bn(a, b; C) holds. As usual, statement 4.15.(1)
is immediate.

The inductive hypothesis implies that Bn−1(a, d; C) holds.
Since C 6∈ Dn−1

a,b and A ∈ Dn−1
a,b are globules, they are different and C < A.

Therefore, d 6∈ C, and so either a ∈ C or C has a pair of (n− 1, a, d)-guards. If
a ∈ C, then statements 4.15.(2) and 4.15.(3) are clear. Therefore, we suppose
that a 6∈ C. We now prove 4.15.(2).

Let Z and W be a pair of (n − 1, a, d)-guards for C, with associated points
x, y ∈ Υ. Note that either Z = x = a or Z ∈ CK

x,y ∩ Dn−1
a,d . Also, either

W = y = d or W ∈ CK
x,y ∩ Dn−1

a,d .
Let P = Z and Q = min{A,W}. Note that P may be a point or a globule

whereas Q is definitely a globule.
Then following is analogous to Claims 1, 2 and 3:
Claim 4: If P is a globule, then P ∈ CK+5δ

a,b ∩ CK+5δ
x,y . In any case Q ∈

CK+5δ
a,b ∩ CK+5δ

x,y .
An identical argument to that which followed Claim 3 implies that C ∈ CK

a,b,
which proves 4.15.(2).

We now prove 4.15.(3). Note that b 6∈ C and we are assuming that a 6∈ C.
Therefore we are required to show that C has a pair of (n, a, b)-guards. We will
show that P and Q form such a pair (with associated points x and y).
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If P = a, then P = x also, so 4.13.(2) holds in this case. Otherwise, P = Z is
a globule and P < C < A (See Figure 17). Since P,A ∈ Dn−1

a,d , and A ∈ Dn−1
a,b

this implies that P ∈ Ln−1
a,b ⊆ Dn

a,b. Thus we have proved 4.13.(2).

C

A

a βa,b

Z

W

βa,d

βx,y

Figure 17. The proof of Case (3), Statement Bn(a, b; C), in case
C has (n− 1, a, d)-guards.

We now show 4.13.(3). Note that Q is a globule and that C < Q. If Q = W ,
then W is a globule and W ∈ CK

x,y ∩Dn−1
a,d . In this case also W ∈ Dn−1

a,d (a,A] ⊆
Ln−1

a,b ⊆ Dn
a,b. This proves 4.13.(3) in this case.

Suppose then that Q = A 6= W . Then Q ∈ Dn
a,b and we need only prove that

Q ∈ CK
x,y.

By the inductive hypothesis, since A is an (n − 1, a, d)-sentinel of C and
C ∈ Dn−1

a,d , property Bn−1(a, d; A) holds. Certainly C < A, and both are
globules, so a 6∈ A. If d ∈ A then since Q = A and A 6= W , it cannot be that W

is a globule. Therefore, in this case d = W = y, so y ∈ A and A ∈ C0
x,y ⊆ CK

x,y.
Suppose then that d 6∈ A. In this case, 4.15.(3) implies that A has a pair

of (n− 1, a, d)-guards, which we denote by ZA and WA, with associated points
xA, yA ∈ Υ (See Figure 18). As before, we define PA = max{ZA, C} and
QA = min{WA,W}. Note that PA is always a globule but QA might be a
point.

We now make the customary
Claim 5: If QA is a globule, then QA ∈ CK+5δ

xA,yA
∩ CK+5δ

x,y . In any case
PA ∈ CK+5δ

xA,yA
∩ CK+5δ

x,y .
Since A ∈ C0

xA,yA
, the argument following Claim 3 now implies that A ∈ CK

x,y

as required. This establishes 4.13.(3). This proves that property Bn(a, b; C),
which finally completes the proof of Case 3.

Case 4: Finally, suppose that C 6∈ Dn−1
a,b but C ∈ Rn−1

a,b .



372 D. GROVES AND J. F. MANNING Isr. J. Math.

C

A

W

a

Z

βx,y

ZA

WA

βa,d

βxA,yA

Figure 18. Case (3), proving that P and Q form a pair of
(n, a, b)-guards for C (when Q = A).

The proof that Bn(a, b; C) holds is identical (with a left-right reflection) to
that of Case 3.

This completes the proof of Claim 4.18, which as we noted above implies that
axiom (A2) holds for the collections D∞A,B . In turn, by Remark 4.9, this gives
a coherent order on each of the sets. The function D∞ was designed to make
axioms (A5)–(A7) immediately apparent, once axiom (A2) holds, and axioms
(A1), (A3) and (A4) are now clear also.

This completes the proof of Theorem 4.12.

Corollary 4.19: Suppose that A,B ∈ G, and that a1, a2 ∈ A and b1, b2 ∈ B.

Then D∞a1,b1
= D∞a2,b2

.

Also, if x ∈ Υ, then D∞a1,x = D∞a2,x.

Proof. Axiom (A1) implies that A,B ∈ D∞a1,b1
∩D∞a2,b2

. An application of (A5)
implies that D∞a1,b1

⊂ D∞a2,b2
, and, symmetrically, D∞a2,b2

⊂ D∞a1,b1
(note that we

are implicitly using the order and separation properties of globules).
The proof of the second assertion is similar (using axiom (A7) instead).

Notation 4.20: Suppose that A,B ∈ G. Then we denote the set D∞a,b for a ∈ A

and b ∈ B by D∞A,B . This is well-defined by the above corollary.
Similarly, if x ∈ Υ and A ∈ G, then the sets D∞A,x and D∞x,A are well-defined.
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5. Preferred paths, preferred triangles, and skeletal fillings

Throughout this section, and the remainder of the paper, G will denote a
torsion-free group which is hyperbolic relative to a (finite) collection of (finitely
generated) subgroups P . We suppose that S is a finite compatible generating
set for G, and that δ is the constant of hyperbolicity for X(G,P, S).

In this section we define preferred paths. Preferred paths give an equivari-
ant, symmetric quasi-geodesic bicombing of the space X = X(G, P, S), and will
be a key to our construction of the bicombing in Section 6 below. Having de-
fined preferred paths, we then use them to understand the combinatorial types
of triangles whose sides are preferred paths.

We fix some notation and terminology: Recall that δ gives rise to the con-
stants K = 10δ, L1 = 100K, and L2 = 3L1. Denote by H the collection of
L1-horoballs in X (Definition 3.21). In this section, the word ‘horoball’ (with-
out a prefix) will refer to an element of H.

Suppose that P is a horoball and N > 0. There is a unique N -horoball which
intersects P nontrivially. We denote this N -horoball by PN .

Any horoball P has a single accumulation point in ∂X, which we denote eP .
Denote by ∂HX the collection of such accumulation points.

Definition 5.1: Recall that in Lemma 3.27 we chose a G-equivariant antisym-
metric geodesic bicombing γ. Let Ω(X) denote the set of unit-speed geodesic
paths in X, up to orientation preserving reparametrization. We will extend γ

to an antisymmetric map from most of (X ∪ H ∪ ∂HX)2 to Ω(X). (If A is a
horoball, we leave γ(A, A), γ(eA, A), γ(A, eA) and γ(eA, eA) undefined.)

First, for each pair of horoballs A,B, we choose (in an antisymmetric and G-
equivariant way), a geodesic γ(A,B), which realizes the distance between A and
B. Second, for each point a ∈ X and each horoball A ∈ H, we (equivariantly)
choose a geodesic path γ(a,A) which realizes the distance from a to A. The
path γ(A, a) is the time-reverse of γ(a,A).

Third, we extend γ to points in ∂HX. If x ∈ X and eA ∈ ∂HX, then we
define γ(x, eA) to be the concatenation of γ(x,A) with the vertical geodesic ray
in A from the endpoint of γ(x,A) to eA.

Finally, if eA, eB ∈ ∂HX correspond to distinct horoballs A and B in H,
then we define γ(eA, eB) to be the path γ(A,B), together with vertical paths
on either end. Note that γ(eA, eB) is always a geodesic line.
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Remark (about torsion) 5.2: As noted in Remark 3.29, 2-torsion may prevent
a choice of paths as in Definition 5.1 above.

Also, if there is torsion, then parabolic subgroups of G could intersect non-
trivially, which makes the G-equivariance problematic.

For this section, these problems can be solved by considering the union of all
shortest paths between A and B (of which there are only finitely many, for a
given A and B). In future sections, this is a more subtle problem: in fact we
should also use the “average” as well as the union.

Similarly, we should take the union (or average) of all geodesics from a point
a to a horoball A which realize the distance from a to A.

5.1. Definition and basic properties of preferred paths. In this sub-
section we apply the construction of Section 4. The family H satisfies the
hypotheses of Theorem 4.12, therefore there is a function D∞ : X ×X → OH
satisfying Axioms (A1)–(A7).

Suppose that a, b ∈ X∪∂HX. We now associate a collection of horoballs Ha,b

to the pair {a, b}. If a, b ∈ X, then Ha,b = D∞a,b. If a ∈ X and b = eB ∈ ∂HX,
then Ha,b = D∞a,B as defined in Notation 4.20. Similarly, if a = eA ∈ ∂HX and
b ∈ X, then Ha,b = D∞A,b and if a = eA, b = eB ∈ ∂HX, then Ha,b = D∞A,B .

Remark 5.3: For any a, b ∈ X ∪ ∂HX, the set Ha,b is a linearly ordered col-
lection of horoballs, and this order is compatible with the order obtained from
projection to γ(a, b).

Definition 5.4: For each A ∈ H, and each pair x, y ∈ A ∪ {eA}, we define
σ(x, y) = σ(y, x) in the following manner: If x = eA, then σ(x, y) is the vertical
ray from y to eA. Thus suppose that x, y ∈ A. Then for some t ∈ T we have
x = (t, p1, k1) and y = (t, p2, k2) . In case p1 = p2, then σ(x, y) is the vertical
geodesic between x and y. Otherwise, suppose that dP (p1, p2) satisfies

2N−1 < dP (p1, p2) ≤ 2N ,

for N ∈ N, where dP (p1, p2) is the distance between p1 and p2 in P , with respect
to the generating set S ∩ P . Then define R′ = max{N, k1, k2} and R = R′,
unless R = L2 in which case R = L2 + 1. Then define σ(x, y) to be the path
which consists of vertical paths from x and y to depth R, and then joins the
endpoints of these vertical paths with the (unique) edge of length 1 at depth R.
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Let m be the midpoint of the unique horizontal edge of σ(x, y). The point m

cuts σ(x, y) into two geodesic segments. The path σ(x, y) is not usually itself a
geodesic, but is very close to one.

Remark 5.5: We insist that the paths σ(x, y) do not have a horizontal edge at
depth L2 in order to simplify some future arguments. In particular, this means
that our preferred paths are ‘transverse’ to D−1(L2).

Lemma 5.6: Let x and y lie in the same horoball A. The path σ(x, y) is

Hausdorff distance at most 5 from γ(x, y).

Proof. The geodesic γ(x, y) coincides with σ(x, y) to depth S, where S is the
maximum depth of γ(x, y). Moreover, the sub-path σ(x, y) ∩ AS has length at
most 7, while the (horizontal) sub-path γ(x, y) ∩ AS has length at most 3 (see
Lemma 3.10). Thus σ(x, y) and γ(x, y) are Hausdorff distance at most 5 from
one another.

We now want to use the collections of horoballs H to define preferred paths
between any two points in X ∪ ∂HX.

Let α, β ∈ X ∪∂HX, and let Hα,β = {A1, . . . , Ak}. Note that Hα,β is a finite
linearly ordered set.

Definition 5.7: Preferred paths. If Hα,β is empty, then we define

pα,β = γ(α, β).

If Hα,β contains a single horoball A, then we set

pα,β = γ(α,A) ∪ σ(a1, a2) ∪ γ(A, β),

where a1 is the terminal point of γ(α,A), and a2 is the terminal point of γ(β,A).
Otherwise, we define the preferred path pα,β to be

γ(α, A1) ∪ r1 ∪ γ(A1, A2) ∪ r2 ∪ · · · ∪ γ(Ak−1, Ak) ∪ rk ∪ γ(Ak, β),

where the ri are paths σ(ai,1, ai,2), where a1,1 is the terminal point of γ(α, A1)
and otherwise ai,1 is the terminal point of γ(Ai−1, Ai); the point a2,k is the
terminal point of γ(Ak, β) and otherwise ai,2 is the initial point of γ(Ai, Ai+1).

This describes pα,β as a set, but we will often consider it as a map, and
parametrize by arc length.
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γ(x, y)x y

A3 An−1

An
A1

A2

Figure 19. A preferred path.

Remark (about torsion) 5.8: We have indicated in Remarks 3.29 and 5.2 how
the paths γ(x, y) and γ(A,B) might be defined using averages in order to ensure
antisymmetry and G-equivariance.

In this framework, preferred paths will consist of all of the “possible” preferred
paths, superimposed like the states of a quantum system.

These more complicated preferred paths will continue to have many of the
properties that honest preferred paths do, though these properties become a
deal more cumbersome to state, let alone prove.

We now make a generalization of Definition 4.17.

Definition 5.9: Suppose that the path γ(·, ·) passes within β ≤ L1 − 2δ of the
(distinct) horoballs A and B. Define

γβ
AB(·, ·)

to be that portion of γ(·, ·) which connects the β-neighborhoods of A and B,
where the symbol ‘·’ is used to mean a point or a horoball.

Definition 5.10: px,y denotes the path obtained from px,y by replacing each
subsegment of the form σ(ai,1, ai,2) by the corresponding geodesic γ(ai,1, ai,2).

Lemma 5.11: If Ai ∈ Hx,y, then either px,y ∩ AL is geodesic for any L ≥ 2δ,

or d(ai,1, ai,2) < 3, where ai,1 and ai,2 are the first and last points on px,y ∩Ai.

Proof. Let px,y ∩ A ∩ D−1(2δ) = {b1, b2} and let γ = γb1,b2 . This consists of
two vertical segments, and a single horizontal segment of length at most 3.
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If γ intersects D−1(L1) nontrivially, then the vertical segments in γ and the
vertical segments in px,y ∩ AL coincide, and the horizontal segments have the
same length. Therefore, in this case, px,y ∩AL is a geodesic.

Otherwise let c1 and c2 be the deepest points of the vertical subsegments of
γ, with c1 lying directly above ai,1 and c2 directly above ai,2. Then the distance
between c1 and c2 is at most 3, which implies that the distance between ai,1

and ai,2 is less than 3.

5.1.1. Parametrizations. We pause briefly to discuss the parametrizations of the
paths γ(x, y), px,y and px,y. These parametrizations are always by arc length.
For each x, y ∈ X ∪ ∂HX choose Ix,y, Ix,y and Jx,y as follows:

If x, y ∈ X, then Ix,y = [0, length(px,y)], and similarly Ix,y = [0, length(px,y)]
and Jx,y = [0, d(x, y)].

If x ∈ X and y ∈ ∂HX, then all of the intervals are [0,∞).
If x ∈ ∂HX, then each of the paths γ(x, y), px,y and px,y begins with an

infinite vertical ray. If y is contained in the same L1-horoball as x, then the
three paths coincide and we define Ix,y = Ix,y = Jx,y = (−∞, L1 −D(y)].

Suppose then that x ∈ ∂HX and that y is not contained in the same L1-
horoball as x. Let x′ be the first point on px,y contained in D−1(L1). Then
the interval Ix′,y is already defined, and we define Ix,y = (∞, 0] ∪ Ix′,y, and
suppose that px,y(0) = x′.

We make similar definitions for Ix,y and Jx,y.

Proposition 5.12: For any two points x and y in X ∪ ∂HX, there are nonde-

creasing functions

f = fxy : Ix,y → Jx,y

and

g = gxy : Jx,y → Ix,y

satisfying:

(1) For all but finitely many points t ∈ Ix,y and s ∈ Jx,y, f ′(t) and g′(s)
exist and are either 0 or 1.

(2) For any t ∈ Ix,y, and s ∈ Jx,y we have

d(px,y(t), γ(x, y)(f(t)) ≤ K + 12δ + 9, and

d(px,y(g(s)), γ(x, y)(s) ≤ K + 12δ + 9.
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(3) If px,y(t) is outside of AL1−(K+2δ) for every A ∈ Hx,y, then f ′(t) = 1.

Similarly, if γ(x, y)(t) is outside of AL1−(K+2δ) for every A ∈ Hx,y,

then g′(t) = 1.

(4) Let A ∈ Hx,y and Â = AL1−(K+2δ). Let [t1, t2] = p−1
x,y(Â) and [s1, s2] =

γ(x, y)−1(Â). The total waiting times in A, i.e., the maximum of the

measures of

{t1 ≤ t ≤ t2 : f ′(t) = 0} and {s1 ≤ s ≤ s2 : g′(s) = 0}
is at most 4K + 18δ + 9. Moreover, the total jumping times in A, i.e.

the maximum of the measures of

{s1 ≤ s ≤ s2 : 6 ∃t, f(t) = s} and {t1 ≤ t ≤ t2 : 6 ∃s, g(s) = t}
is at most 4K + 18δ + 9.

Proof. We suppose for the moment that x, y ∈ D−1[0, L1]. We will deal with
the other cases at the end of the proof. In fact, we only deal with the cases that
x, y ∈ D−1[0, L1] ∪ ∂HX. The other cases are similar, but are not required for
later applications.

We use the same symbol for a path and its image, throughout. Note that a
map from the domain of one path to the domain of another induces a map from
the image of one path to the image of the second. Conversely, if both paths
are embeddings, then a map between their images induces a map between their
domains.

Recall that the path px,y is defined to be a concatenation of geodesic segments
outside of horoballs, and paths of the form σ(u, v) through horoballs.

Consider the difference between the paths σ(u, v) and γ(u, v). This consists
of a path of length at most 9 in σ(u, v) and a path of length at most 5 in γ(u, v).
Define functions

Ix,y
f1−→ Ix,y, and Ix,y

g1−→ Ix,y,

so that the induced maps on the intersection of the images are the identity, and
the induced maps on the differences send a component to its initial point.

The functions f1 and g1 have derivatives at all but finitely many points, the
derivatives are always 0 or 1, and the waiting times and jumping distances are
at most 9 per horoball in Hx,y.

It is not difficult to see that it suffices now to define appropriate functions

Ix,y
f2−→ Jx,y and Jx,y

g2−→ Ix,y.
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There are three cases, depending on whether Hx,y is empty, contains a single
horoball, or contains at least two horoballs.

Case 1: If Hx,y is empty, then px,y = px,y = γ(x, y), and we can set both f

and g equal to the identity map.

Case 2: Suppose Hx,y is a single horoball. This case is strictly easier than
Case 3, and we leave it as an exercise.

Case 3: There is more than one horoball in Hx,y. By Axiom (A2), the inter-
section γ(x, y) ∩AL1−K

i is non-empty for each 1 ≤ i ≤ n.

Let u be the first point on γ(x, y) which intersects AL1−K
1 , and let v be the

first point on px,y which intersects AL1−K
1 . We define f2 and g2 to be the identity

on [0, (u, v)x]. Note that the segments px,y[0, (u, v)x] and γ(x, y)[0, (u, v)x] have
the same length and are identified under the map to the comparison tripod
Yu,v,x. Thus, for example, the distance between px,y(t) and γ(x, y)(f2(t)) is at
most δ for all t ∈ [0, (u, v)x]. There is clearly no waiting or jumping in this
interval.

Similarly, let w be the last point on γ(x, y) intersecting An, and let z be the
last point on px,y intersecting An. We can define the map

f2 :
[
|px,y| − (y1, y2)y, |px,y|

]
→

[
d(x, y)− (w, z)y, d(x, y)

]
,

to be the unique (orientation preserving) isometry, and g2 = (f2)−1 on this
interval. Once again, the images of these intervals are identified under the map
to the comparison tripod Yw,z,y. We also define y1,n = γ(x, y)(d(x, y)− (w, z)y)
and y2,n = px,y(d(x, y)− (w, z)y).

We now define the maps f2 and g2 on the region between adjacent horoballs
Ai and Ai+1.

Let 1 ≤ i ≤ n−1. Let a be the last point on γ(x, y)∩AL1−K
i , and let b be the

first point on γ(x, y)∩AL1−K
i+1 . Similarly, let c be the last point on px,y∩AL1−K

i

and let d be the first point on px,y ∩AL1−K
i+1 . Suppose that a = γ(x, y)(ta), and

define times tb, tc and td analogously. By drawing two comparison tripods (one
for the triangle ∆(a, b, c) and one for ∆(b, c, d)) we see that

Ia,b =
[
ta + (b, c)a, tb − (c, d)b

]
and Ic,d =

[
tc + (a, b)c, td − (b, c)d

]
,

have the same length (note that between AL1−K
i and AL1−K

i+1 , both px,y and
γ(x, y) are geodesics parametrized by arc length).
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Define f2 : Ic,d → Ia,b and g2 : Ia,b → Ic,d to be orientation preserving isome-
tries. Note that the comparison tripods imply that for t ∈ Ia,b,

d(γ(x, y)(t), px,y(g2(t))) ≤ 2δ,

and for s ∈ Ic,d,

d(px,y(s), γ(x, y)(f2(s))) ≤ 2δ.

We claim now that those parts of Ix,y on which f2 is not yet defined
are segments I1, . . . , In so that px,y(Ij) ⊆ N2δ(AL1−K

j ), and similarly that
those parts of Jx,y on which g2 is not yet defined are segments I ′1, . . . , I

′
n so

that γ(x, y)(I ′j) ⊆ N2δ(AL1−K
j ). To see this consider, for example, the points

γ(x, y)(ta + (b, c)a) and px,y(tc + (a, b)c), for the points a, b, c and d as above.
These are typical endpoints of the intervals on which f2 and g2 are not yet de-
fined. Any geodesic between a and c lies entirely within the convex set AL1−K

i .
Therefore, the point γ(x, y)(ta + (b, c)a) lies within δ of AL1−K

i , because it is
in the preimage of the central point of the comparison tripod Ya,b,c. Now,
px,y(tc + (a, b)c) lies within δ of the point on the geodesic [c, b] in the preimage
of the central point of Ya,b,c, and in particular, px,y(tc + (a, b)c) lies within 2δ

of AL1−K
i . Similar arguments for all other points prove the claim.

We now define f2 and g2 on the remaining subsegments, Ij and I ′j . We
fix 1 ≤ j ≤ n. Let x1 and y1 be the images of the endpoints of I ′j under
γ(x, y), and let x2 and y2 be the images of the endpoints of Ij under px,y. The
path px,y(Ij) is a concatenation of three geodesics, one traveling towards Aj as
quickly as possible, one through Aj and one traveling away from Aj as quickly
as possible. Let x3 be the first point on px,y(Ij) ∩ Aj and let y3 be the last
point on px,y(Ij) ∩Aj (see Figure 20.)

It is clear from the previous arguments that d(x1, x2), d(y1, y2) ≤ 2δ. Also,
x2 is within K + 2δ of Aj . However, between x2 and x3, the path px,y is
traveling as quickly as possible towards Aj , so d(x2, x3) ≤ K + 2δ. Similarly,
d(y2, y3) ≤ K + 2δ.

Suppose that x1 = γ(x, y)(s1), y1 = γ(x, y)(s2), x2 = px,y(t1), x3 = px,y(t2),
y3 = px,y(t3) and y2 = px,y(t4).

For t ∈ [t1, t2], define f2(t) = s1 , and for t ∈ [t3, t4] define f2(t) = s2.
Drawing comparison tripods as in Figure 21 allows us to see that

J1 =
[
s1 + (x3, y1)x1 , s2 − (x3, y3)y1

]
, and
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J2 =
[
t2 + (x1, y1)x3 , t3 − (x3, y1)y3

]

have the same length.
Assume first that J1 and J2 are nonempty, and define f2 : J2 → J1 and

g2 : J1 → J2 to be orientation preserving isometries.

Ai

AL1−K
i

px,y

γ(x, y)x1
y1

x3

x2

y3

y2

Figure 20. γ(x, y) and px,y near Ai ∈ Hx,y.

x1
y1

y2
y3x3

x2

Figure 21. Comparison tripods for the triangles in Figure 20.

It remains to define f2 on the intervals K1 =
[
t2, t2 + (x1, y1)x3

]
and K2 =[

t3 − (x3, y1)y3 , t3

]
, and g2 on the intervals K3 =

[
s1, s1 + (x3, y1)x1

]
and

K4 =
[
s2−(x3, y3)y1 , s2

]
. Since d(x1, x2) ≤ 2δ and d(x2, x3) ≤ K +2δ, we have

d(x1, x3) ≤ K + 4δ. This implies that the lengths of K1 and K3 are at most
K + 4δ. The same is true of the lengths of K2 and K4.
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If t ∈ K1, define f2(t) = s1 + (x3, y1)x1 . If t ∈ K2, define f2(t) =
s2 − (x3, y3)y1 . If s ∈ K3, define g2(s) = t2 + (x1, y1)x3 . If s ∈ K4, define
g2(s) = t3 − (x3, y1)y3 .

If J1 and J2 are empty, we must define f2 and g2 slightly differently:

f2([t2, t2 + (y1, y3)x3 ]) = s1

f2([t2 + (y1, y3)x3 , t4]) = s2

g2([s1, s1 + (y1, x3)x1 ]) = t2

g2([s1 + (y1, x3)x1 , s2]) = t3

In this case, the intersections of γ(x, y) and px,y with AL1−K
i are quite small.

We have now defined f2 and g2 in the case that x, y ∈ D−1[0, L2]. It is
not difficult to see that the functions f = f2 ◦ f1 and g = g1 ◦ g2 satisfy the
requirements of the proposition. In fact (and this is used below), we have shown
that they satisfy the requirements of the proposition with the constants reduced
by 6δ.

Finally, we now turn to the case that one or both of x, y lie in ∂HX.
Suppose x ∈ ∂HX and y ∈ D−1[0, L1]. As in the discussion above the

proposition, let x′ be the first point on px,y so that x′ ∈ D−1(L1). Let x′′ be
the first point on γx,y so that x′′ ∈ D−1(L1). Then Ix,y = (−∞, 0] ∪ Ix′,y and
Jx,y = (−∞, 0] ∪ Jx′′,y. Note also that px′,y = px,y|Ix′,y , by the definition of
preferred paths.

We define fxy to be the identity on (−∞, 0]. If we can prove that d(x′, x′′) ≤
6δ, then there are obvious maps φ : Jx′,y → Jx′′,y and ψ : Jx′′,y → Jx′,y which
identify the long side of the comparison tripod Yx,x′,y, and collapse the short
sides to the center of the tripod. If we have such functions φ and ψ, then we
define

fx,y|Ix′,y = φ ◦ fx′,y : Ix′,y → Jx′′,y,

and
gx,y|Jx′′,y = gx′,y ◦ ψ : Jx′′,y → Ix′,y.

These will satisfy the requirements of the proposition so long as d(x′, x′′) ≤ 6δ.
To see this, we argue as follows: Let σ be that part of px,y from x until the

second horoball in Hx,y (or to be all of px,y if Hx,y is a singleton). It is not
difficult to see that σ must be a geodesic, because that part after x′ travels away
from the horoball as quickly as possible (by the definition of preferred paths).
Let z be the endpoint of σ which is not x′. By Axiom (A2) of Section 4, and
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Lemma 4.5, there is a point z′ ∈ γ(x, y) which lies within K of the horoball, A,
which contain z. The geodesic between z and z′ lies entirely within the convex
set AL1−K . The (partially ideal) triangle with vertices x, z, z′ is 3δ-slim, which
proves that d(x′, x′′) ≤ 6δ (because both px,y and γ(x, y) are vertical on the
interval (−∞, 3δ).

We now suppose that x, y ∈ ∂HX. Then there are points x′, y′ ∈ px,y and
x′′, y′′ ∈ γ(x, y) so that

Ix,y = (−∞, 0] ∪ Ix′,y′ ∪ [|px′,y′ |,∞),

and

Jx,y = (−∞, 0] ∪ Jx′′,y′′ ∪ [d(x′′, y′′),∞).

As before, d(x′, x′′), d(y′y,′′ ) ≤ 6δ. Thus, there are obvious functions
φ′ : Jx′,y′ → Jx′′,y′′ and ψ′ : Jx′′,y′′ → Jx′,y′ and we make the following defini-
tions:

fxy(t) =





t, if t ∈ (−∞, 0)

φ′(fx′,y′(t)), if t ∈ Ix′,y′ , and

t + (d(x′′, y′′)− |px′,y′ |) otherwise,

and

gxy(t) =





t, if t ∈ (−∞, 0)

ψ′(fx′,y′(t)), if t ∈ Ix′,y′ , and

t + (|px′,y′ | − d(x′′, y′′)) otherwise.

We now state a couple of corollaries of Proposition 5.12

Corollary 5.13: For any a, b ∈ X∪∂HX, the Hausdorff distance between pa,b

and γ(a, b) is at most K + 12δ + 9. The Hausdorff distance between pa,b[t1, t2]
and γ(a, b)[f(t1), f(t2)] is at most 3K + 21δ + 14.

Proof. The first assertion is obvious from Proposition 5.12.(2). Suppose that
t ∈ [t1, t2]. Since the function f from Proposition 5.12 is monotone, there is some
s ∈ [f(t1), f(t2)] so that f(t) = s. By Proposition 5.12.(2), d(γ(a, b)(s), pa,b(t) ≤
K + 12δ + 9. Conversely, suppose that s ∈ [f(t1), f(t2)]. It follows from
monotonicity and Proposition 5.12.(4) that there is a point s′ ∈ f([t1, t2] with
|s− s′| ≤ 4K+18δ+9

2 . It follows that γ(a, b)(s) is no further than K + 12δ + 9 +
4K+18δ+9

2 ≤ 3K + 21δ + 14 from pa,b[t1, t2].
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Corollary 5.14: The path px,y is a (λ, ε)-quasi-geodesic, for

λ = 2 and ε = 20K + 120δ + 72.

Proof. Let t1 and t2 be points in [0, length(px,y)], and let x1 = px,y(t1) and
x2 = px,y(t2). Since px,y is parametrized by arc length, |t2 − t1| ≥ d(x1, x2) is
automatic.

Let x′i = γ(x, y)(f(ti)), for i ∈ {1, 2} and f as described in Proposition 5.12.
Then d(x′1, x

′
2) ≤ d(x1, x2) + 2(K + 12δ + 9). The arc length |t2− t1| is at most

|f(t2)−f(t1)| = d(x′1, x
′
2) plus the amount of time in [t1, t2] that f ′(t) = 0. The

number of horoballs in Hx,y that px,y passes within K + 2δ of between time t1
and t2 is at most 2+ |t2−t1|

L1
; the amount of time f ′(t) = 0 when px,y(t) is near a

horoball is at most 4K + 18δ + 9 < 1
2L1, by part (4) of Proposition 5.12. Thus

|t2 − t1| ≤ d(x′1, x
′
2) +

(
2 +

|t2 − t1|
L1

)
(4K + 18δ + 9),

which implies

1
2
|t2 − t1| ≤

(
1− 4K + 18δ + 9

L1

)
|t2 − t1| ≤ d(x′1, x

′
2) + 2(4K + 18δ + 9),

and so

|t2 − t1| ≤ 2d(x′1, x
′
2) + 4(4K + 18δ + 9)

≤ 2d(x1, x2) + 4(K + 12δ + 9) + 4(4K + 18δ + 9)

= 2d(x1, x2) + 20K + 120δ + 72

We now make some some other useful observations about preferred paths.

Lemma 5.15: Preferred paths are G-equivariant.

Remark 5.16: It follows from Corollary 5.14 that sub-paths of preferred paths
are quasi-geodesic, and hence form δ′′-slim triangles for some δ′′. However, the
δ′′ coming from (λ, ε)-quasi-geodesicity is much worse than the δ′ below, and
our previous choice of L1 secretly takes into account the particular bound given
in the next proposition.

Proposition 5.17: There exists a constant

δ′ = 6K + 48δ + 28 ≤ 1
4
L1

so that any triangle or bigon whose sides are sub-paths of preferred paths is

δ′-slim.
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This includes triangles any or all of whose vertices are in ∂HX.

Proof. Let P , Q, and R be three points in X ∪ ∂HX, joined by parts of pre-
ferred paths pab, pcd and pef . Specifically, suppose that pab[t1, t2] joins P to Q,
pcd[t3, t4] joins Q to R, and pef [t5, t6] passes from R to P , where ti ∈ [−∞,∞)
for i odd and ti ∈ (−∞,∞] for i even.

By Corollary 5.13, the side pab[t1, t2] is Hausdorff distance at most
3K + 21δ + 14 from the geodesic segment γ(a, b)[f(t1), f(t2)], where f = fab is
the function from Proposition 5.12. Furthermore, the endpoints γ(a, b)(f(t1))
and γ(a, b)(f(t2)) of this segment are (if not ideal) at most K + 12δ + 9 from
P and Q respectively, by Proposition 5.12.(2). Similar statements can be made
about the other two sides. If none of the endpoints of the geodesic segments are
ideal, they may be joined together by segments of length at most 2(K+12δ+9),
to form a geodesic hexagon, which must be 4δ-slim. Otherwise, they may be
partially joined up to form a pentagon with one ideal vertex, a quadrilateral
with two ideal vertices, or simply an ideal triangle. Call the (possibly partially
ideal) polygon so obtained H. Subdividing and using Lemma 2.11, it is easy to
see that H is 6δ-slim.

Suppose that x ∈ pab[t1, t2]. There is some point x′ on γ(a, b)[f(t1), f(t2)]
at most 3K + 21δ + 14 away from x (see Figure 22.) Since H is 6δ-slim,

x

x′

z′

z

Figure 22. The generic case is pictured. It is also possible for
z′ to lie on one of the dashed segments, in which case it is even
closer to the other two sides.

there is some point z′ on another side of H so that d(z′, x′) ≤ 6δ. If z′ is on
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γ(c, d)[f(t3), f(t4)] or γ(e, f)[f(t5), f(t6)], then there is a point z on pcd[t3, t4] or
pef [t5, t6] with d(z, z′) ≤ 3K +21δ+14. Otherwise, z′ is at most K +12δ+9+δ

from one of the vertices of our original triangle. In either case x is within
2(3K + 21δ + 14) + 6δ = 6K + 48δ + 28 of one of the other two sides of the
triangle.

Remark (about torsion) 5.18: Any of the ‘possible’ preferred paths referred to
in Remark 5.8 will satisfy all of the above properties, and an identical proof
suffices to establish this.

5.2. Preferred triangles.

Definition 5.19: Let ∆ be a 2-simplex. A preferred triangle is a continuous
map

ψ : ∂∆ → X ∪ ∂HX

so that if e is one of the three sides of ∆, then ψ|e is an embedding, whose
image is a preferred path.

Remark 5.20: If ψ : ∂∆ → X ∪ ∂HX is a preferred triangle, then ψ|∆(0) is
injective.

Assumption 5.21: For ease of exposition, we will always assume that if
ψ : ∂∆ → X ∪ ∂HX is a preferred triangle, then ψ does not send the ver-
tices of ∆ to D−1(L2). In our applications, this will always be the case. The
following definitions can be extended to the case that vertices are sent by ψ to
D−1(L2), but at the expense of making the statements a bit more cumbersome.

For the rest of this section, we fix a preferred triangle

ψ : ∂∆ → X ∪ ∂HX

so that ψ(v) 6= L2 for v ∈ ∆(0). We refer to the elements of ∆(0) as corners.
We next define a skeletal filling of a preferred triangle. This filling will

take the form of a 1-complex (with 3 different kinds of edges) inscribed on the
2-simplex ∆.

Definition 5.22: The points in (D ◦ψ)−1(L2) will be referred to as L2-vertices.

We now describe the different types of preimages of L2-horoballs which can
occur in a preferred triangle.



Vol. 168, 2008 RELATIVELY HYPERBOLIC DEHN FILLING 387

Definition 5.23: Suppose that P ∈ H is such that PL2 ∩ψ(∂∆) 6= ∅. Recall that
the unique point in ∂X which is a limit of points in P is called eP .

(1) If ψ−1(PL2 ∪ eP ) contains a single corner of ∂∆, then we say that
ψ−1(PL2 ∪ eP ) is a bite.

(2) If ψ−1(PL2 ∪ eP ) intersects exactly one side of the triangle ∂∆, then
ψ−1(PL2 ∪ eP ) is a nibble.

(3) If ψ−1(PL2 ∪ eP ) intersects exactly two sides of the triangle ∂∆ and is
not a bite, then ψ−1(PL2 ∪ eP ) is a dip.

(4) If ψ−1(PL2 ∪ eP ) intersects all three sides of the triangle ∂∆, then it is
a plunge.

See Figure 23.

a

a′

b′

bite nibble dip plunge

d′

c′
g

f ′

d f

e′

cb

g′

e

Figure 23. Possibilities for the preimage of a single L2-horoball
are shown in bold. For any letter x, the vertices x and x′ form
a pair (Definition 5.26).

Lemma 5.24: Any L2-vertex is in the boundary of a unique bite, dip, nibble,

or plunge.

Lemma 5.25: There is a partition of the L2-vertices into sets, {Si}, of cardi-

nality 2 , so that if Si = {x, y}, then d(ψ(x), ψ(y)) ≤ 1.

Proof. Suppose that x is an L2-vertex. Then x is in the boundary of a unique
bite, dip, nibble, or plunge. We consider each of them in turn, in order to define
the set Si of which x is a member. Let PL2 be the L2-horoball containing φ(x).
We delay the proof that if Si = {x, y}, then d(ψ(x), ψ(y)) ≤ 1 until later in the
proof.

Suppose that x is contained in the boundary of a bite. Then there is a unique
L2-vertex y 6= x in ∂∆ so that ψ(y) ∈ PL2 . Define Si = {x, y} in this case.
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Suppose that x is contained in the boundary of a dip. Then the set of L2-
vertices on the boundary of this dip has cardinality 4. We partition this into
two sets by pairing the L2-vertices on different sides which are closest to the
common vertex of ∂∆.

Suppose that x is contained in a nibble. Then the boundary of the nibble has
cardinality 2, and we define the set containing x to be this boundary.

Finally, suppose that x is contained in a plunge. The boundary of the plunge
has cardinality at most 6; we partition the boundary into sets of size 2 by pairing
L2-vertices which are closest to a given vertex of ∂∆.

The procedure described above (and also in Figure 23) defines a partition
of the L2-vertices into sets {Si} of cardinality 2. It remains to investigate the
distance between ψ(x) and ψ(y) where {x, y} = Si.

We consider first the case that Si = {x, y}, and that x and y lie in different
sides of ∂∆. This covers the cases when x and y are contained in the boundary
of a bite, a dip, or a plunge.

Now, ψ(x) ∈ D−1(L2) ∩ pa,b, say. Suppose that ψ(y) ∈ D−1(L2) ∩ pa,c (we
can arrange both of these by relabeling a, b and c if necessary). Preferred paths
are chosen to be vertical from depth L1 to at least L2+1 (see Definition 5.4). In
fact, because preferred paths travel as quickly as possible towards L1-horoballs,
they must be vertical from depth 2δ to at least L2 + 1.

Let zx be the point on pa,b which is at depth L1 and lies closest to ψ(x), and
let zy be defined similarly in relation to ψ(y).

Preferred paths are 1
4L1-slim by Proposition 5.17. Thus, there is a point

w ∈ pa,c ∪ pb,c which is within 1
4L1 of zx.

Suppose first that w ∈ pa,c. Then, since preferred paths are vertical between
depths 2δ and L2 + 1, it is not difficult to see that d(zx, zy) ≤ 1

2L1. Because
of the geometry of combinatorial horoballs, distance between points on vertical
paths strictly decreases with increasing depth. Thus, by depth 1 1

2L1 in P , the
paths pa,b and pa,c must be within 1 of each other. It is now easy to see that
d(ψ(x), ψ(y)) ≤ 1.

Suppose then that w ∈ pb,c. Then, arguing as above, there is a point wx ∈
D−1(L1) ∩ P ∩ pb,c so that d(zx, wx) ≤ 1

4L1.
Similarly, there is a point w′ ∈ pa,b ∪ pb,c within 1

4L1 of zy. If w′ ∈ pa,b, then
we see that d(ψ(x), ψ(y)) ≤ 1, just as above. Therefore, suppose that w′ ∈ pb,c,
in which case we have some wy ∈ D−1(L1) ∩ P ∩ pb,c so that d(zy, wy) ≤ 1

4L1.
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Note that the part of pb,c between wx and wy is σ(wx, wy). We consider the
maximum depth σ(wx, wy). First note that because of the choice of x and y,
it must be that pb,c ∩ PL2 = ∅. Therefore, the maximum depth of σ(wx, wy) is
less than L2. If this depth is at most L2− 2, then at depth L2− 2 the preferred
paths pa,b and pa,c are at most 3 apart, which implies that at depth L2 they
are at most 1 apart, as required. Therefore, we are left with the case that the
maximum depth of σ(wx, wy) is exactly L2−1. In this case, at depth L2−2, the
preferred paths pa,b and pb,c are distance at most 1 apart, as are the preferred
paths pa,c and pb,c. Because σ(wx, wy) has maximum depth L2 − 1, at depth
L2 − 2 the two vertices in pb,c are distance at most 2 apart. This implies that
the distance (at depth L2 − 2) between the vertices in pa,b and pa,c at depth
L2 − 2 is at most 4. This implies that d(ψ(x), ψ(y)) ≤ 1.

We are now left with the case that x and y are contained in the same
side of ∂∆, so in the boundary of a nibble. Suppose that ψ(x), ψ(y) ∈ pa,b.
Define the points zx, zy ∈ D−1(L1) ∩ P ∩ pa,b. There are points wx, wy ∈
D−1(L1) ∩ P ∩ (pb,c ∪ pa,c) so that d(zx, wx), d(zy, wy) ≤ 1

2L1. Here there are
two cases to consider, depending on whether wx and wy are contained in the
same preferred path, or not. In any case, The preferred paths pa,c and pb,c do
not intersect PL2 (because we are considering a nibble). However, by Proposi-
tion 5.17, one of pa,c or pb,c must intersect PL2− 1

4 L1 nontrivially.
There are a number of cases to consider, depending on the maximum depth in

P of pa,c and pb,c. We consider the most complicated, and leave the remainder
as exercises for the reader.

Suppose that wx ∈ pa,c, wy ∈ pb,c and that both pa,c and pb,c intersect PL2−1

nontrivially. Consider the points in pa,c ∩P ∩D−1(L1). There are two of these
points, wx, and ux, say. Similarly, let pb,c ∩ P ∩D−1(L1) = {wy, uy}.

It is not difficult to see (using 1
4L1-slim triangles and the properties of the

paths σ(r, s)) that d(ux, uy) ≤ 1
2L1.

Therefore, at depth L2 − 3, we have points z′x, z′y ∈ pa,b, w′x, u′x ∈ pa,c and
w′y, u′y ∈ pb,c so that a primed point is directly beneath its unprimed coun-
terpart. Now, d(z′x, w′x), d(u′x, u′y), d(w′y, z′y) ≤ 1. Also, the (L2 − 3)-distance
between w′x and u′x is at most 4 (because the maximum depth of pa,c in P is
L2 − 1). Similarly, the L2 − 3 distance between w′y and u′y is at most 4. This
shows that the L2 − 3 distance between z′x and z′y is at most 7. This implies
(because 7 < 23) that d(ψ(x), ψ(y)) ≤ 1, as required.

This completes the proof of Lemma 5.25.
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Definition 5.26: An element of the partition in Lemma 5.25 will be called a
pair.

Definition 5.27: We define a 1-complex Skel(ψ) which we call the skeletal fill-
ing of ψ. The vertex set of Skel(ψ) is equal to ∆0 ∪ (D ◦ ψ)−1(L2). There are
three kinds of edges:

(1) The first kind come from the subdivision of ∂∆ by the vertex set.
(2) If {x, y} are a pair of L2-vertices, in the sense of Definition 5.26, and

ψ(x) = ψ(y), then we connect x and y by an edge which we call a
ligament.

(3) If {x, y} are a pair of L2-vertices so that ψ(x) 6= ψ(y), then we connect
x and y by an edge which we call a rib.

Lemma 5.28: The identity map on ∂∆ extends to an embedding of Skel(ψ)
into ∆.

Remark 5.29: By Lemma 5.25, the map ψ also extends to a map

ψ̈ : Skel(ψ) → X ∪ ∂HX

which sends each ligament to a point and each rib to a single horizontal edge.

Definition 5.30: Suppose there are (possibly degenerate) subintervals σ1 and σ2

of sides of ∂∆ so that ψ(σ1) = ψ(σ2), and suppose that these are chosen to
be maximal such intervals with endpoints in the vertex set of Skel(ψ). Then
the minimal subcomplex of Skel(ψ) containing all edges with both endpoints
in σ1 ∪ σ2 is called a leg. A leg contains one or two distinguished ligaments,
joining the endpoints of σ1 to the endpoints of σ2.

We note that ψ collapses each leg to a subsegment of a preferred path.

Lemma 5.31: Each leg of Skel(ψ) contains exactly on corner of ∆. In particular,

Skel(ψ) has at most 3 legs.

Proof. Consider a corner v of ∂∆, and the two sides e1 and e2 containing v. Let
x1 ∈ e1 and x2 ∈ e2 be the endpoints of the ligament joining e1 and e2 which
is furthest from v.

Let ψ(e1) = pa,b and ψ(e2) = pa,c, so ψ(v) = a. Suppose that ψ(x1) =
ψ(x2) ∈ D−1(L2)∩P . Then P ∈ Ha,b∩Ha,c. By Axiom (A6) and the definition
of preferred paths those parts of pa,b and pa,c between a and ψ(x1) = ψ(x2) are
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identical. This implies that the segments between v and x1 and v and x2, and
the ligaments joining them, form a leg.

If there is no ligament joining the edges e1 and e2 then there is no leg inter-
secting both of these sides.

Definition 5.32: Let Γ be a graph and let e be an edge of Γ which separates
Γ into two components. We say Γ1 and Γ2 are obtained from Γ by surgery
along e if there are edges e1 in Γ1 and e2 in Γ2 which can be identified to give
a graph isomorphic to Γ.

Definition 5.33: Successive surgery along the distinguished ligaments of Skel(ψ)
yields a collection of at most 4 graphs, at most three of which come from legs,
and exactly one of which contains pieces of all three edges of ∂∆. We call the
graph which contains pieces of all three edges of ∂∆ the middle of Skel(ψ). 4

(See Figure 24.)

Figure 24. A somewhat stylized picture of the image of a pre-
ferred triangle.

Lemma 5.34: Let ψ : ∂∆ → X ∪ ∂HX be a preferred triangle, with edges

e1, e2, e3, and suppose that ψ(e1) = pa,b, ψ(e1) = pa,c and ψ(e3) = pb,c. Suppose

further that P is a horoball which is such that ψ(e1)∩PL2 6= ∅. Then P ∈ Ha,b

and either P ∈ Ha,c or P ∈ Hb,c.

4 In an earlier version of this paper, preferred triangles could have feet, as well as legs

and a middle. The improved construction in Section 4 does away with the need for feet.
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Proof. Follows from the fact that the image ψ(∂∆) is a quasi-geodesic triangle
which is 1

4L1-slim and that L2 − 1
4L1 = 3L1 − 1

4L1 > L1.

Definition 5.35: Suppose that ψ : ∂∆ → X ∪ ∂HX is a preferred triangle, with
corners v1, v2, v3 so that ψ(v1) = a, ψ(v2) = b and ψ(v3) = c. Let e1 be the
edge of ∂∆ joining v1 to v2. If ψ−1(PL2) 6= ∅ and P ∈ Ha,b ∩ Ha,c then we
say that P is associated to v1. We define horoballs associated to v2 and v3

analogously.
If P is a horoball so that ψ−1(PL2) is nonempty and contained in a leg, l,

then we say that P is associated to l.

Remark 5.36: By Lemma 5.34, if PL2 ∩ ψ(e1) 6= 0, then P is contained in two
of Ha,b,Ha,c and Hb,c.

Therefore, for any horoball P , if ψ−1(PL2) is nonempty, then P is associated
to some corner of ∆.

It could be that a horoball P as in Definition 5.35 is contained in all three
of Ha,b,Ha,c and Hb,c, in which case P is associated to all three corners of ∂∆.
However

Lemma 5.37: There is at most one horoball associated to all three corners of

∂∆.

Proposition 5.38: Let ψ : ∂∆ → X ∪ ∂HX be a preferred triangle and let v

be a vertex of ∂∆.

There is at most one horoball which is associated to v and is not also associ-

ated to a leg in Skel(ψ).

Proof. Suppose that the horoballs A and B are associated to v.
Let a, b, c be the images of the vertices of ∂∆, with a = ψ(v). Then A,B ∈

Ha,b ∩ Ha,c and suppose that A < B in the order coming from Ha,b.We will
prove that A is associated to a leg in ∂∆.

The preferred paths pa,b and pa,c coincide at least until they reach the horoball
B and in particular, the intersections of these paths with A is identical. Since
one of AL2 ∩ pa,b and AL2 ∩ pa,c is nonempty (since A is associated to v), both
of these sets are non-empty.

It is not difficult to see that ψ−1(AL2) is contained in a leg.
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Corollary 5.39: Let ψ : ∂∆ → X ∪ ∂HX be a preferred triangle. The total

number of ribs and ligaments in the feet and middle of Skel(ψ) is at most 6. In

particular, the number of ribs in Skel(ψ) is at most 6.

Proof. Each L2-vertex in Skel(ψ) maps to a horoball associated to some corner
of ∂∆. If u is an L2-vertex in a foot or middle of Skel(ψ) and P is the horoball
containing ψ(u), then P is not associated to a leg.

For each horoball, A, the set of L2-vertices in Skel(ψ) which map to AL2 has
cardinality at most 6, and at most 4 unless ψ−1(AL2 ∪ eA) is a plunge. Thus
there are 3 ribs or ligaments for a plunge, and at most 2 for other horoballs.

Lemma 5.37 implies that there is at most one plunge and Proposition 5.38
implies that there are at most 3 horoballs not associated to legs. The result
now follows easily.

Corollary 5.40: Let ψ : ∂∆ → X ∪ ∂HX be a preferred triangle and let M

be the union of the feet and middles of Skel(ψ). Then

|M (0)| ≤ 15.

Proof. There are 3 vertices for the corners of ∂∆.
Also, there are at most 6 ribs or ligaments in the feet and middle of Skel(ψ),

and each of these contributes two vertices.

We now proceed to decompose preferred triangles. A key feature of preferred
triangles is Proposition 5.44 below.

Definition 5.41 (Sub-pictures): Suppose that ψ : ∂∆ → X ∪ ∂HX is a preferred
triangle. Successive surgery along all of the ribs and ligaments of Skel(ψ) yields
a collection of graphs. We call these graphs sub-pictures.

The following result follows immediately from the fact that the depth function
D is continuous.

Lemma 5.42: Suppose that Pic is a sub-picture of Skel(ψ). Then either

ψ(Pic) ⊂ D−1([0, L2]) or ψ(Pic) ⊂ D−1([L2,∞)).

Definition 5.43 (Thick-thin decomposition of preferred triangles): Suppose that
ψ : ∂∆ toX ∪ ∂HX is a preferred triangle, and that Pic is a sub-picture of
Skel(ψ).
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If ψ(Pic) ⊂ D−1([0, L2]), then we call Pic a thick sub-picture. If ψ(Pic) ⊂
D−1([L2,∞)) then we call Pic a thin sub-picture.

Proposition 5.44: If ψ : ∂∆ → X ∪ ∂HX is a preferred triangle, and u

and v are vertices in the same thick sub-picture of Skel(ψ) then any geodesic

γ(ψ(u), ψ(v)) joining ψ(u) to ψ(v) does not penetrate any (L2 + L1)-horoball.

Proof. Let Pic be a thick sub-picture of Skel(ψ). Then ψ(Pic) ⊂ D−1([0, L2]).
Furthermore, the image of Pic under ψ consists of subsegments of preferred
paths pa,b, pa,c and pb,c, say, together with single edges from D−1(L2), corre-
sponding to the images of ribs in Pic.

If pa,b and pa,b both intersect ψ(Pic) nontrivially, then they either intersect
in ψ(Pic) (in case their preimages are joined by a ligament) or else are joined
by an edge of length 1 in D−1(L2) (in case their preimages are joined by a rib).

Thus, any point in ψ(Pic) lies within distance at most 1
2 from pa,b∩pa,c∩pb,c.

Suppose pa,b ∩ ψ(Pic) 6= ∅. Let ma,b be the point in pa,b ∩ ψ(Pic) closest to
a, and let na,b be the point closest to b. Define points ma,c, na,c, mb,c and nb,c

analogously. Not all of these points need be defined, if the intersection of some
preferred path with ψ(Pic) is empty. Also, it is certainly possible for some of
these points to be the same, if they lie in the image of a ligament, or if they are
the image of a corner of ∂∆.

Suppose that ma,b = pa,b(t). Let m̂a,b = γ(a, b)(f(t)), where f is the function
from Proposition 5.12.

Use the function f to define points n̂a,b, m̂a,c, etc.
Note that d(ma,b, m̂a,b) ≤ K +12δ +9, and similarly for the other points and

their hatted counterparts.
The points ma,b, na,b, . . . are partitioned into some of the pairs defined earlier

in this section, and, in particular, each pair consists of one or two points which
are distance at most 1 apart.

Thus, the geodesics between the points m̂a,b, n̂a,b, . . ., consisting of the sub-
segments of γ(a, b), γ(a, c), γ(b, c), and paths joining the points whose un-hatted
counterparts correspond to a ‘pair’.

Therefore, depending on whether there are two or three preferred paths which
intersect Pic nontrivially, the points m̂a,b, n̂a,b, etc. form either a hexagon or
a quadrilateral. If it is a hexagon, then three of the sides have length at most
2(3K + 21δ + 14) + 1, and if it is a quadrilateral two of the sides of length
at most 2(3K + 21δ + 14) + 1. Call the sides [m̂a,b, n̂a,b] etc., the ‘long’ sides
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of this polygon. Any point on a long side of this polygon is distance at most
2(3K + 21δ + 14) + 1 + 3δ from one of the other long sides.

Now consider any vertices u, v ∈ Pic. As already noted, there are points u′, v′

so that u′ and v′ are contained in preferred paths and d(u, u′), d(v, v′) ≤ 1/2.
By Proposition 5.17 there are points u1, v1 on different preferred paths to u′

and v′, respectively so that d(u′, u1), d(v′, v1) ≤ δ′ + 1. Since there are only
three preferred paths, at least two of u′, u1, v

′, v1 must lie on the same preferred
path. Since u′ and u1 lie on different preferred paths, as do v′ and v1, one of
the two points lies within δ′ of u′ and one within δ′ of v′. Let this pair of points
on the same preferred path be u and v, so that d(u, u′), d(v, v′) ≤ δ′. That part
of the preferred path which lies between u and v lies in a thick sub-picture, and
so does not penetrate any (L2 +2)-horoball. Let µ be this part of the preferred
path.

By Proposition 5.12, there are points û, v̂ on a long side of the polygon de-
scribed above, so that d(u, û), d(u, û) ≤ 3K + 21δ + 14. The geodesic be-
tween û and v̂ (which lies on a long side of the polygon) lies at Hausdorff
distance at most 3K + 21δ + 14 from µ, and therefore does not penetrate any
(L2 + (3K + 21δ + 14) + 2)-horoball.

Now, consider the geodesic quadrilateral formed by u, v, û, v̂. We have

d(u, û) ≤ d(u, u′) + d(u′, u) + d(u, û) ≤ δ′ + (3K + 21δ + 14) + 1
1
2
,

and, similarly, d(v, v̂) ≤ δ′ + (3K + 21δ + 14) + 1 1
2 .

Therefore, any point on the geodesic between u and v lies in at most
δ′ + (3K + 21δ + 14) + 1 1

2 + 2δ of some point on the geodesic between û and v̂.
This implies that the geodesic between u and v does not penetrate any

(L2+2(3K+21δ+14)+2δ+3 1
2 )-horoball. Since L2+2(3K+21δ+14)+2δ+3 1

2 <

L2 + L1, the proof is finished.

Remark (about torsion) 5.45: In the context of the “quantum” preferred paths,
when G is not torsion-free, not all choices of triples of preferred paths will have
the controlled properties of preferred triangles in this section. In applications,
it is possible to make consistent choices. We will say more about this in Part 2.

6. A homological bicombing

In this section we describe how the results from previous sections in this paper
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may be combined with results of Mineyev from [29] to construct a quasi-geodesic
homological bicombing of X ∪ ∂HX (in the sense of Definitions 2.35 and 2.36).

6.1. Mineyev’s bicombing. In this subsection, we briefly recall a construction
of Mineyev from [29]. We need a slightly more general statement than appears
in [29], and we explain how Mineyev’s proof implies Theorem 6.2 below.

Suppose that Γ is a locally finite graph which is δ-hyperbolic for some integer
δ ≥ 1.

Remark 6.1: In his construction, Mineyev further assumes that Γ has bounded
valence. This is important for the area bounds, but not for making the defini-
tions.

Suppose that the group G acts freely on Γ. Let γ be a G-equivariant geodesic
bicombing on Γ (see Definition 2.31). Let P be the homological bicombing
induced by γ (see Remark 2.34).

For each vertex a in Γ, define

pra : Γ(0) → Γ(0),

as follows:

• pra(a) = a; and
• if b 6= a, then pra(b) = γ(a, b)(r), where r is the largest (integral)

multiple of 10δ which is strictly less than d(a, b).

For vertices a, b in Γ, the flower at b with respect to a is the set

Fl(a, b) = S(a, d(a, b)) ∩B(b, δ) ⊂ Γ(0).

Now, for each pair of vertices a, b ∈ Γ define a 0-chain f(a, b) in Γ inductively
on the distance d(a, b) as follows:

• if d(a, b) ≤ 10δ then f(a, b) = b;
• if d(a, b) > 10δ and d(a, b) is not an integral multiple of 10δ then

f(a, b) = f(a, pra(b)); and
• if d(a, b) > 10δ and d(a, b) is an integral multiple of 10δ then

f(a, b) =
1

#Fl(a, b)

∑

x∈Fl(a,b)

f(a, pra(x)).
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For each vertex a ∈ Γ(0), define a 0-chain, star(a) by

star(a) =
1

#B(a, 7δ)

∑

x∈B(a,7δ)

x.

By linearity, star(a) is defined for any 0-chain a.
Now define, for a, b ∈ Γ(0),

f(a, b) = star(f(a, b)).

We now define a homological bicombing Q′ on Γ. First note that, by linearity,
Pa,b makes sense when a is any 0-chain. The 1-chain Q′

a,b is defined inductively
on d(a, b), as follows: if d(a, b) ≤ 10δ, then Q′a,b = Pa,b. Suppose now that
d(a, b) > 10δ. By [29, Proposition 7(2)]

supp(f(a, b)) ⊆ B(Pa,b(10δ), 8δ).

Note that Mineyev’s proof of this does not use the bounded valence assumption.
Therefore, for each x ∈ supp(f(b, a)) we have d(a, x) < d(a, b), so Q′

a,x is defined
by induction. Define Q′

a,f(b,a)
by linearity over the second variable and define

Q′a,b = Q′
a,f(b,a)

+ Pf(b,a),b.

Finally, we define

Qa,b =
1
2
(Q′

a,b −Q′b,a),

so that Q is anti-symmetric.
Mineyev proves that when Γ has bounded valence, the bicombing Q has

bounded area, in the sense of Theorem 6.2 below. When Γ does not have
bounded valence, these area bounds break down completely. However, we are
only going to use the bicombing from [29] on a subset of X of uniformly bounded
depth, and on such a subspace the valence is uniformly bounded, and Mineyev’s
techniques apply.

The proof of the area bound for a given triangle occurs entirely in the 60δ-
neighborhood of the union of the three geodesic sides. Moreover, if we have a
bound on the valence in some part of a graph, then we can calculate a bound
on the number of vertices in any given ball which lies entirely within the chosen
part. The proof from [29] now applies directly to prove the following theorem.

Theorem 6.2 (Mineyev): There is a function T = T (δ, v) so that: For any

finite valence δ-hyperbolic graph Γ, and group G acting freely on Γ, there is a
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(18δ)-quasi-geodesic G-equivariant antisymmetric homological bicombing Q so

that

|Qab + Qbc + Qca|1 ≤ T (δ, v)

whenever a, b, c are vertices of Γ spanning a geodesic triangle Tabc so that every

vertex in the 60δ-neighborhood of Tabc has valence less than v.

Theorem 6.2 is a key ingredient in the construction in this section. The
other key ingredients are the construction of preferred paths and the analysis
of preferred triangles from Section 5

6.2. The bicombing q. In the remainder of this section we define our homo-
logical bicombing q of (X ∪ ∂HX) × (X ∪ ∂HX), which uses preferred paths
and Mineyev’s bicombing Q from Theorem 6.2. (See Definition 2.35 for the
definition of homological bicombing which allows some points to be ideal.)

Suppose that a, b ∈ X ∪ ∂HX. Let pa,b be the preferred path between a and
b.

Decompose pa,b into subintervals, oriented consistently with pa,b, which lie
either entirely within D−1([0, L2]) or entirely within D−1([L2,∞)), and so that
the endpoints of these subintervals lie in {a, b} ∪D−1(L2).

By the way that preferred paths were defined, there is a unique way of per-
forming this decomposition.

Suppose that µ is a subinterval in the decomposition of pa,b so that µ lies in
D−1([0, L2]), and let x and y be the endpoints of µ.

Lemma 6.3: The geodesic between x and y does not intersect any

(L2 + 2(3K + 21δ + 14) + 2δ)-horoball.

Proof. By Proposition 5.12, there exist x′, y′ ∈ γ(a, b) so that d(x, x′), d(y, y′) ≤
3K + 21δ + 14, and so that the Hausdorff distance between pa,b[x, y] and
γ(a, b)[x′, y′] is at most 3K + 21δ + 14. Thus, γ(a, b)[x′, y′] does not penetrate
any (L2 + (3K + 21δ + 14))-horoball.

The geodesic quadrilateral with vertices x, x′, y, y′ has two sides of length
at most 3K + 21δ + 14. Therefore, the geodesic between x and y lies in a
(3K+21δ+14)+2δ neighborhood of γ(a, b)[x′, y′], and hence does not penetrate
any (L2 + 2(3K + 21δ + 14) + 2δ)-horoball, as required.
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Definition 6.4 (Definition of q): Suppose that a, b ∈ X ∪ ∂HX are distinct. Let
pa,b be the preferred path between a and b, and let pa,b be the induced 1-chain.
The decomposition of pa,b described above induces a decomposition of pa,b. Let
µ be an element of the decomposition of pa,b for which supp(µ) ⊂ D−1[0, L2].
Let ∂µ = µ+ − µ−.

Taking the sum over all such µ we define

qa,b = pa,b −
∑

µ

(
Q(µ−, µ+)− µ

)
.

Because ∂µ = ∂Q(µ−, µ+) = µ+ − µ−, we have ∂pa,b = ∂qa,b. We claim that
q is a homological bicombing on X ∪ ∂HX in the sense of Definition 2.35 and
that furthermore it is 6000δ2-quasi-geodesic in the sense of Definition 2.36. It
also has nice properties analogous to those in Theorem 6.2 above. See Theorem
6.10 below for the precise statements about the bicombing q.

Proposition 6.5: For any a, b ∈ X ∪ ∂HX, supp(qa,b) lies in a
(
K + 25δ + 9

)
-

neighborhood of any geodesic between a and b.

Proof. By Corollary 5.13, pa,b lies in a (K + 7δ + 9)-neighborhood of γ(a, b).
By construction and Theorem 6.2, supp(qa,b) lies in an 18δ-neighborhood of

pa,b.

Since K+25δ+9 < 6000δ2, Proposition 6.5 proves the first of the two required
statements for q to be 6000δ2-quasi-geodesic. We now prove the remaining
requirement.

Proposition 6.6: q is a 6000δ2-quasi-geodesic homological bicombing on

X ∪ ∂HX.

Proof. By Proposition 6.5, it remains to prove statement (2) of Definition 2.36.
Let a, b ∈ X(0) be distinct. By Theorem 6.2 and the definition of q, we have

|q(a, b)|1 ≤ 18δ|pa,b|1.

By Corollary 5.14, the length of pa,b is at most 2d(a, b) + 20K + 120δ + 72 <

325δd(a, b).

Remark 6.7: It is also possible to prove a suitable refinement of statement (2)
as alluded to in Remark 2.37.
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6.3. Bounded thick area. The main result of Section 6 is Theorem 6.10.

Definition 6.8: Suppose a, b, c ∈ X(0)∪∂HX. We define a 1-cycle cabc as follows:
Let φ : ∆ → X ∪ ∂HX be the preferred triangle associated to the triple

(a, b, c). Associated to φ is the graph Skel(φ) (see Definition 5.27), which has
associated thick sub-pictures (see Definition 5.43). Let Pic be a thick sub-
picture of Skel(φ). The vertices of Pic inherit a circular order (v1, . . . , vn) from
the order (a, b, c).

Define

cPic =
∑

i∈Z/m

Q(φ̈(vi), φ̈(vi+1)).

Finally, define

cabc =
∑

Pic

cPic,

where the sum is over all thick sub-pictures of Skel(φ).

Observation 6.9: If Pic is a thick sub-picture lying in a leg of Skel(φ), then
cPic = 0.

The following is a key theorem for our proof of Theorem 11.11, one of the
major steps in proving Theorem 7.2:

Theorem 6.10: There exists a constant T1, depending only on X, so that for

all a, b, c ∈ X ∪∂HX there is a 1-cycle cabc, as described in Definition 6.8 above

then

|cabc|1 ≤ T1.

Also,

supp
(
q(a, b) + q(b, c) + q(c, a)− cabc

) ⊂ D−1[L2,∞).

Proof. We have already noted that the thick sub-pictures which lie inside a leg
do not contribute anything to cabc. Thus we may concentrate on thick sub-
pictures lying in the feet or middle of Skel(φ). By Corollary 5.40, there are at
most 15 vertices in total in all such sub-pictures. Therefore, we can triangulate
all of these sub-pictures with at most 13 triangles, whose vertices all appear as
a vertex in one of the thick sub-pictures.

Let u and v be such vertices. By Proposition 5.44, the geodesic between u

and v does not intersect any (L2 + L1)-horoball.
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Let v be the maximum valence of any vertex in D−1[0, L2 + L1 + 18δ], and
let T (δ, v) be as in Theorem 6.2. Define T1 = 13T (δ, v).

We can express cabc as the sum of at most 13 1-chains of the form
Qu1,u2 +Qu2,u3 +Qu3,u1 , where u1, u2 and u3 are the images under φ̈ of vertices
in thick sub-pictures of Skel(φ) which lie in the feet or middle.

The result now follows from Theorem 6.2.

The following is immediate from Theorem 6.10 and Theorem 3.25.

Corollary 6.11: For all a, b, c ∈ X ∪ ∂HX there exists a 2-chain ωabc so that

(1) ∂ωabc = cabc; and

(2) |ωabc|1 ≤ MXT1,

where MX is the constant for the linear homological isoperimetric function for

X.

Remark (about torsion) 6.12: In the presence of torsion, the bicombing q, and
the 2-chains ωabc, can be defined without much difficulty using “averaged” pre-
ferred paths, and the ideas already contained in this section.

Part 2. Dehn filling in relatively hyperbolic groups

7. Dehn filling in groups

In Part 2 of this paper, we provide an application of the constructions from
Part 1.

Definition 7.1: Let G be a group, and P a subgroup. Suppose that G is gener-
ated by S and P is generated by P ∩ S. If K E P is a normal subgroup of P ,
then we define

|K|P = inf
k∈Kr{1}

|k|P∩S ,

where |k|P∩S is the distance from k to the identity in the Cayley graph
Γ(P, P ∩ S). By convention |{1}|P = ∞.

In the special case that P is free abelian and K the cyclic group generated
by κ ∈ K, |K|P is just the length of κ in P .

The main result of Part 2 is the following theorem.



402 D. GROVES AND J. F. MANNING Isr. J. Math.

Theorem 7.2: Let G be a torsion-free group, which is hyperbolic relative to a

collection P = {P1, . . . , Pn} of finitely generated subgroups. Suppose that S is

a generating set for G so that for each 1 ≤ i ≤ n we have Pi = 〈Pi ∩ S〉.
There exists a constant B depending only on (G,P) so that for any collection

{Ki}n
i=1 of subgroups satisfying

• Ki E Pi; and

• |Ki|Pi ≥ B,

then the following hold, where K is the normal closure in G of K1 ∪ · · · ∪Kn.

(1) The map Pi/Ki
ιi−→ G/K given by pKi 7→ pK is injective for each i.

(2) G/K is hyperbolic relative to the collection Q={ιi(Pi/Ki) : 1≤ i≤n}.
In fact, much more than this is true. For example, for i 6= j we have

ιi(Pi/Ki) ∩ ιj(Pj/Kj) = {1},

(see Corollary 9.4) and each ιi(Pi/Ki) is malnormal in G/K (see Corollary
9.5). Also, if G is non-elementarily hyperbolic relative to {Pi}, then G/K is
non-elementarily hyperbolic relative to {ιi(Pi/Ki)} (see Theorem 11.12).

The remainder of the paper is devoted to the proof of Theorem 7.2, and the
subsidiary assertions mentioned above.

Theorem 7.2 clearly holds if n = 1 and G = P1, so we henceforth assume
(without mention) that this is not the case.

8. Equations involving parabolics and skeletal fillings of surfaces

In this section we suppose that G is hyperbolic relative to P = {P1, . . . , Pn},
and that X = X(G,P, S,R) is the cusped space associated to some compatible
set of generators S, and some collection of relators R, as described in Section
3. Finally H E G is an arbitrary normal subgroup of G.

In order to use the geometry of X to study the quotients of G, we will need
to turn equations in G/H or (represented as maps of compact planar surfaces
into X/H) into “pleated surfaces” in X/H. Exactly what this means depends
on the context, and will become clear as we proceed.

8.1. Lifting and straightening. Let ΓH = Γ(G,S)/H ⊂ X/H. Notice
that ΓH is a Cayley graph for G/H. We first show how to extend maps of
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compact surfaces with boundary components in ΓH to proper maps of non-
compact surfaces. We then say what we mean by “lifting and straightening”
such proper maps.

Let Σ be a compact planar surface, and let

φ : Σ → X/H

be a cellular map so that φ|∂Σ ⊂ ΓH .

Definition 8.1: If P ∈ P, let ∂P Σ be the union of those boundary components
c so that φ|c lifts to an arc in X which lies in a single left coset of P . Let

∂PΣ =
⋃

P∈P
∂P Σ.

be the union of those boundary components of Σ, each of which is sent into the
image of a single 0-horoball of X (see Definition 3.21). We refer to ∂P as the
parabolic boundary of Σ.

Definition 8.2: Let

Σ̌ = Σ ∪∂PΣ ∂PΣ× [0,∞)

be the surface obtained from Σ by attaching a half-open annulus to each com-
ponent of ∂PΣ. We extend φ to a proper map

φ̌ : Σ̌ → X/H

as follows: Let c ∼= S1 be a component of ∂PΣ. The map φ sends c× {0} to a
loop γ0 which is contained in Γ(P, P ∪ S)/P for some P ∈ P. This loop lifts to
some path γ̃0 in X, each edge of which is the top edge of some vertical square.
Let γ1 be the loop which is the projection of the path obtained by traversing
the bottom edges of those squares, and define φ̌|c×[0,1] to be a homotopy across
the images of those squares in X/G so that φ̌|c×{1} = γ1. Similarly, define
φ̌|c×[k,k+1] for each k ≥ 1 so that D(φ̌(c× {t})) = t for each t ≥ 0.

A peripheral path in X/H is a path in the 1-skeleton which lies in the
image of the Cayley graph of some Pi ∈ P.

Definition 8.3: Let Σ be a compact planar surface, and let φ : Σ → X/H be
as above. A reducing arc for φ is an essential, properly embedded interval
σ : I → Σ so that σ(∂I) ⊂ ∂P Σ for some P ∈ P and φ ◦ σ is homotopic rel
endpoints to a peripheral path.
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Definition 8.4: Analogously we may define reducing arcs for proper maps into
X/G: Suppose that Ξ is obtained from a compact planar surface by removing
finitely many points. Let f : Ξ → X/H be a proper map, and suppose σ : R→ Ξ
is an essential proper arc. We say that σ is a reducing arc if f ◦ σ is properly
homotopic into D−1[L,∞) for some (and hence for any) L > 0.

Lemma 8.5: The map φ : Σ → X/H has a reducing arc if and only if

φ̌ : Σ̌ → X/H has a reducing arc.

Lemma 8.6: Let Ξ be a surface of finite type (possibly with boundary), and

let T be a triangulation of Ξ (partially ideal if appropriate). Let ψ : Ξ → X/H

be a proper map satisfying: (i) ψ has no reducing arcs; and (ii) if e is an edge

of T which limits on a puncture p of Ξ then there is a neighborhood U of p so

that ψ|e∩U is vertical.

Then there is a proper homotopy from ψ to a map

ψT : Ξ → X/H

so that if e is any edge of T , then ψT |e lifts to a preferred path in X.

Proof. Let e be an edge of T . It suffices to show that ψ|e is homotopic to a
preferred path, and that this homotopy is level-preserving near the ends of e.

Choose a lift ψ̃|e of ψ|e to X. The map ψ̃|e extends to a map from I to
X ∪ ∂HX. Let a be the image of 0 and b the image of 1. Since e is not a
reducing arc, a 6= b and there is a preferred path pa,b between these points.
Consider pa,b as a map from e to X.

Suppose that a is ideal. Then both ψ̃|e and pa,b are vertical on some initial
segment, so we may reparametrize so that D ◦ ψ̃|e and D ◦ pa,b agree on this
initial segment. Therefore, there is an obvious horizontal homotopy from ψ̃|e
to pa,b on this initial segment. We consider the projection of this homotopy to
X/H.

In case b is ideal, we may similarly perform a homotopy on a terminal sub-
segment of e.

We are now left to deal with a compact loop, formed by the paths ψ̃|e and
pa,b (or the sub-paths with which we have not yet dealt). The space X is
simply-connected.

Remark 8.7: Suppose that φ : Σ → X/H is as at the beginning of this subsec-
tion. The surface Σ̌ and the map φ̌ : Σ̌ → X/H satisfy condition (ii) of the
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hypothesis of Lemma 8.6.

Remark (about torsion) 8.8: In the presence of torsion it is not, in general,
possible to find a map ψT as in Lemma 8.6 so that each triangle is mapped
to something which is combinatorially controlled the way that preferred trian-
gles are. Having no reducing arcs is not sufficient; an additional hypothesis is
required.

8.2. The skeleton of a map. In this subsection, we define the skeleton of
the map of a surface into X/H, assuming the surface has been triangulated by
edges which are sent to preferred paths.

Definition 8.9: Suppose that Ξ is a surface with a (possibly partially ideal) tri-
angulation T , and that θ : Ξ → X/H sends each edge of T to a non-degenerate
path which lifts to a preferred path between points in X∪∂HX. Further assume
that θ sends no vertex of T to a point in an L2-horoball. Let Ξ be the compact
surface obtained from Ξ by filling in the punctures; T induces a triangulation
T of Ξ. Then θ extends to a map

θ : Ξ → X/H ∪ (∂HX)/H.

If ∆ is a triangle of T , then θ|∂∆ lifts to a preferred triangle in X (Definition
5.19). The skeletal filling Skelθ|∂∆ can then be inscribed on Ξ (Lemma 5.28).
The skeleton of θ, Skelθ, is the 1-complex in Ξ which is the union of the
Skelθ|∂∆ for ∆ ∈ T .

Remark 8.10: A typical application of the above definition and the lemmas
below is the situation where φ : Σ → X/H is as at the beginning of the section
(with no reducing arcs). In this situation, we will take Ξ to be Σ̌ and θ to be
φ̌T .

Remark 8.11: Let θ : Ξ → X/H and T be as described in Definition 8.9, and
write Ξ(1) for the union of the edges of T . By Remark 5.29, we can extend
θ|Ξ(1) to a map

θ̈ : Skelθ → X/H ∪ (∂HX)/H

which collapses each ligament to a point, and sends each rib to a horizontal
edge. Observe that D(θ̈(x)) = L2 for any vertex v of Skelθ not coming from a
vertex of T .
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Definition 8.12: Let θ : Ξ → X/H and T be as described in Definition 8.9, and
let θ̈ : Skelθ → X/H ∪ (∂HX)/H be as in Remark 8.11. Let D : Skelθ → [0,∞]
be as follows:

D(x) =




∞ if x is a vertex coming from a puncture.

D(θ̈(x)) otherwise.

Let v be a vertex of Skelθ coming from a puncture of Ξ. Let E(v) ⊂ Ξ be
the smallest closed disk containing the component of D

−1
[L2,∞] which also

contains v. The link of v, Lk(v), is the boundary of E(v).

Remark 8.13: Note that Lk(v) is contained in the skeleton of θ. If Ξ is a
punctured sphere, then Lk(v) is a circle made up entirely of ribs and ligaments;
otherwise it may contain parts of edges of T . Also notice that E(v) contains no
vertex of T other than v. In Figure 30, one can see an example showing both
kinds of links.

The next two lemmas follow easily from the fact that θ restricted to a triangle
of T , lifts to a preferred triangle in X, and that both X and L2-horoballs in X

are simply connected.

Lemma 8.14: Let θ : Ξ → X/H and T be as described in Definition 8.9, and

let θ̈ : Skelθ → X/H ∪ (∂HX)/H be as in Remark 8.11. Let ι : Skelθ → Ξ be an

inclusion which is the identity on edges in T . The map θ is properly homotopic

to a map θ′ so that θ′ ◦ ι = θ̈.

Lemma 8.15: Let θ : Ξ → X/H and T be as described in Definition 8.9, and

let θ̈ : Skelθ → X/H ∪ (∂HX)/H be as in Remark 8.11. Let σ : S1 → Ξ be a

loop surrounding a puncture x, so that θ ◦ σ(S1) lies entirely in the component

of (θ ◦D)−1[L2,∞) surrounding x. Let γ : S1 → Lk(x) be a homeomorphism.

Then θ ◦ σ is homotopic to θ̈ ◦ γ inside D−1[L2,∞).

9. Punctured spheres and disks

In this section we investigate relations in G/K amongst the images of the par-
abolic elements of G. In particular, we prove assertion (1) of Theorem 7.2. We
also prove Theorem 9.3.

For this section, we make the following standing assumptions:
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(1) G is a finitely generated, torsion-free group, which is hyperbolic relative
to a collection P = {P1, . . . , Pn} of finitely generated subgroups;

(2) S is a finite compatible generating set for G with respect to P (in the
sense of Definition 2.15);

(3) X(G,P, S) is δ-hyperbolic.

9.1. From parabolic equations to surfaces and punctured spheres.

In this paragraph, we explain how any equation amongst parabolic words (and
their conjugates) may be turned into a map of a compact planar surface with
boundary into X/G; we can then extend this to a proper map of a punctured
sphere into X/G using Definition 8.2.

Suppose that in G there is an equality of the form:

(1) 1 =
m∏

i=1

gipig
−1
i ,

where, for each i, pi ∈ Pji and gi ∈ G. Choosing words for each gi and words in
S ∩ Pji for each pi, we find a map φ̃ : Σ̃ → X of a disk, sending the boundary
to a loop representing the equation.

Projection gives a map π ◦ φ̃ : Σ̃ → X/G.
Let Σ be the surface obtained from the disk Σ̃ by identifying those parts of

the boundary corresponding to the gj in pairs (Figure 25).

1

g1k1g
−1
1

g1k1g
−1
1 g2k2g

−1
2

Figure 25. Identifying those parts of the disk Σ̃ labelled by the
conjugating elements yields a compact planar surface which
maps into X/G.

The map π ◦ φ̃ factors through the quotient map from Σ̃ to Σ. Let
φ : Σ → X/G be the resulting map.
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The m boundary components of Σ are sent by φ to peripheral loops in X/G

whose labels are the words chosen for the pi above.
Conversely, given a compact planar surface with all but (possibly) one bound-

ary component labelled by elements of the Ki, we can reconstruct an equality
like (1) for the word representing the other boundary component, by choosing
the gj via some paths through the surface.

9.2. The groups Pi/Ki inject into G/K.

Theorem 9.1: There is a constant R = R(δ) ≤ 12 ·23000δ so that the following

holds: If {K1, . . . , Kn} are so that Ki E Pi and |Ki|Pi > R then the natural

map ιi : Pi/Ki → G/K is an injection, where K is the normal closure in G of

K1 ∪ · · · ∪Kn.

Proof. (cf. [26, Proof of Theorem 3.1])
We will show that if, for some i, the map ιi is not injective, then |Kl|Pl

must
be small for some l.

Let α ∈ Pi \Ki be an element of K. Thus there is some equation

(2) α =
m∏

j=1

gjkjg
−1
j

for some finite sequence of gj ∈ G and kj ∈ Kij . We say that such an equation
represents the death of α in G/K. We may suppose that the product in
(2) is minimal in the following sense: If α′ is any element of

⋃
i Pi \

⋃
i Ki, and

α′ =
m′∏
r=1

grkrg
−1
r

for some collection of gr ∈ G and kr ∈ Kir
, then m′ ≥ m. (In other words, the

expression in (2) is minimal in length not only for α, but over all such equations
with the left hand side an element of

⋃
i Pi \

⋃
i Ki.)

The equality (2) is realized by a map φ : Σ → X/G, as in Subsection 9.1.

Claim 9.2: The map φ has no reducing arcs.

Proof. Let σ be a reducing arc. Each of the boundary components of Σ has
a corresponding word, and thus a corresponding base point (the starting point
of this word). We may assume that σ starts and finishes at one of these base
points. The path σ determines some element p of G. Because σ is homotopic to
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a peripheral path, p is contained in some Pk. We suppose φ has been homotoped
so that φ ◦ σ is a peripheral path.

There are five cases to consider, depending on the endpoints of σ.

Case 1: Suppose that the endpoints of σ are on different boundary components,
neither of which corresponds to α. Cutting along σ yields a new surface Σ′ with
fewer boundary components than Σ (see Figure 26); two have been removed,

Figure 26. Reducing the number of boundary components la-
belled with elements of Ki.

and the new one is sent to a word representing kipkjp
−1 for some i, j. This

contradicts the minimality assumption.

Case 2: Suppose next that the initial point of σ lies on the boundary com-
ponent corresponding to α, and that the terminal point lies on the boundary
component corresponding to ki for some i. Cutting along σ again yields a sur-
face Σ′ with one fewer boundary component than Σ. The boundary components
corresponding to α and ki have been removed. The new boundary component
has label α′ = αpkip

−1. Since Ki E Pi, and α 6∈ Ki, we also have α′ 6∈ Ki. This
again contradicts the minimality of equation (2).

Case 3: Suppose that both endpoints of σ lie on the boundary component
corresponding to α. Cutting Σ along σ yields two compact planar surfaces,
each with fewer boundary components than Σ. One of them represents the
death of p in G/K, whilst the other represents the death of pα.
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In case p 6∈ Ki, the equation for p contradicts minimality. Thus we may
suppose that p ∈ Ki, in which case pα 6∈ Ki, and again we get a contradiction
to minimality.

Case 4: Finally, suppose that σ is a loop whose endpoints are on the boundary
component corresponding to ki (as in Figure 27). Cutting along σ yields a pair

σ

Figure 27. Case 4 of Claim 9.2.

of surfaces, both of which have fewer boundary components than Σ. If p 6∈ Kji

then the surface Σ′ not containing α corresponds to an equation representing
the death of p or pki (depending on whether ki is contained in Σ′). On the other
hand, if p ∈ Kji , then we can replace the surface not containing α by a single
puncture, to yield a surface Σ′′ with fewer punctures than Σ, representing the
death of α.

In either case, this contradicts the minimality of m.

This proves Claim 9.2

As in Section 8.1, let Σ̌ = Σ ∪ ∂Σ× [0,∞), and let

φ̌ : Σ̌ → X/K

be the extension from Definition 8.2.
We now choose an ideal triangulation T of the punctured sphere Σ̌. As Σ̌ is

an m + 1-times punctured sphere, T contains 2m− 2 triangles. Let

φ̌T : Σ̌ → X/K
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be the map from Lemma 8.6, which sends each edge of T to a preferred path,
and let

¨̌φT : Skel(φ̌T ) → X/G ∪ (∂HX)/G,

be as in Remark 8.11.
If T ∈ T , then φ|∂T lifts to a preferred triangle φ̃T : ∂T → X. Let R(T ) be

the number of ribs in Skel(φ̃T ), and note that this number does not depend on
the lift chosen. Corollary 5.39 implies that R(T ) ≤ 6.

Let
A(φ) =

∑

T∈T
R(T ).

Corollary 5.39 immediately implies

(3) A(φ) ≤ 6(2m− 2) < 12m.

Let x be one of the punctures of Σ̌ not corresponding to α. By Lemma 8.15,
¨̌φ|Lk(x) is a loop at the L2-level which, considering the L2-level to be the image
of a Cayley graph for Pi, represents an element k of Ki.

It follows that Lk(x) must contain at least 2−L2 |k|Pi ribs.
Thus

A(φ) ≥ 2−L2

(
min

s
|Kis |Pis

)
m.

Therefore, by (3),

min
s
|Kis

|Pis
≤ 2L2

A(φ)
m

< 12 · 2L2 .

9.3. On the structure of the quotients G/K. The theme in this subsec-
tion is that, by choosing large enough algebraic slope lengths, we can preserve
much of the structure of G in its quotients. See [20] for more results along these
lines.

Theorem 9.3: Suppose G is torsion-free and that |Ki|Pi
> 12 · 2L2 for each i.

Let P and P ′ be conjugate into P and suppose that whenever P g = P ′ then

g 6∈ K. Then the images of P and P ′ in G/K intersect trivially.

Proof. Suppose that P is conjugate to Pj ∈ P, and let KP be the conjugate of
Kj in P . Define KP ′ similarly. If the theorem is false, then there is an equation
in G of the form

(4) q = q′
m∏

i=1

gikig
−1
i ,
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where q ∈ P rKP and q′ ∈ P ′rKP ′ . Suppose we have chosen such an equation
with m minimal over all such equations (over all choices of P and P ′).

This gives rise to a map φ of a compact planar surface with m + 2 boundary
components into X/G. Once again, we claim that this map has no reducing
arcs.

q′q′

ki

σ

qq p

kip

Figure 28. This kind of reducing arc gives rise to at least one
new equation of type (4), if p 6∈ Kji .

Let σ be a reducing arc which is a peripheral arc, and let p be the correspond-
ing element of G, contained in Ki, say. Most of the cases are entirely analogous
to those in the proof of Theorem 9.1; they all lead to a contradiction to min-
imality, or to injectivity. We deal with the most interesting case, when σ is a
loop whose endpoints lie on a puncture corresponding to some ki, and so that
cutting along σ separates the puncture corresponding to q from the puncture
corresponding to q′ (see Figure 28).

By Theorem 9.1, q and q′ are nontrivial in G/K. Therefore, p 6∈ Ki. Now,
the hypothesis of the theorem implies that it cannot be that there are k, k′ ∈ K

so that P = P k
i and P ′ = P k

i . Therefore, one of the two diagrams obtained by
cutting along σ yields a contradiction to the minimality of m. This, and the
omitted cases, show that there are no reducing arcs.

We now proceed as in the proof of Theorem 9.1. The only difference is that
we now have 2m triangles, rather than 2m−2. However, it is still the case that
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Skel(φ̌T ) has at most 12m ribs, and therefore

min
s
|Kis |Pis

≤ 12 · 2L2 ,

as required.

Corollary 9.4: Under the hypotheses of Theorem 9.3, if i 6= j then

ιi(Pi/Ki) ∩ ιj(Pj/Kj) = {1}.
Corollary 9.5: Under the hypotheses of Theorem 9.3, ιi(Pi/Ki) is malnormal

in G/K, for each i.

Proposition 9.6: Suppose that G is torsion-free and that |Ki|Pi > 12 ·2L2 for

each i. Suppose that g ∈ G r {1} is such that there exists x ∈ X so that the

preferred path px,g.x lies entirely within D−1([0, L2 − 1]). Then g 6∈ K.

Proof. As usual, we suppose that the theorem is false, build a surface in X/K,
and use its geometry to derive a contradiction.

If g ∈ K then there is an equality in G of the form

(5) 1 = g−1
m∏

i=1

gikig
−1
i ,

where ki ∈ Kji and gi ∈ G. We choose such an expression for g which minimizes
m. Since g 6= 1 in G, we have m ≥ 1.

Choosing words for each gi, each ki and g, the expression for g in (5) gives
a loop in X, beginning at 1. In turn, this induces a map φ̃ : Σ̃ → X of a
disk, as described in Subsection 9.1. Also as in Subsection 9.1, we may glue
Σ̃ along parts of the boundary corresponding to the gi, to obtain a compact
planar surface, Σ, together with a map φ′ : Σ → X/K. The surface Σ has one
distinguished boundary component which is labelled by a word representing g,
and we call this component the g-boundary of Σ.

We claim that there are no reducing arcs for φ whose endpoints do not lie on
the g-boundary. This follows as before: Any such reducing arc either contradicts
Theorem 9.1 or else the minimality of m.

Let ξ be a simple path in X from 1 to x, and consider the loop in X which
is the concatenation ξ · px,gx ·µ · η, where µ is the path gξ traversed backwards,
and η is a lift to X of the image under φ′ of the g-boundary of Σ.

This loop may be filled with a disk in X, which projects to an annulus in
X/K, which has one boundary component the image of the g-boundary of Σ.
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Homotoping φ′ over the annulus gives a new map φ : Σ → X which maps the
g-boundary to the image of the preferred path px,g.x in X/K, see Figure 29.

1 g

x gx

Figure 29. The surface Σ.

We now define a surface Σ̌ almost as in Definition 8.2 by attaching a half-open
annulus to each component of ∂Σ except for the g-boundary. This gives a map

φ̌ : Σ̌ → X/K.

The g-boundary of Σ̌ is defined in the obvious way.
Choose a (partially ideal) triangulation T of Σ̌ which has one vertex which

is the preimage of x, and all other vertices ideal, and one edge the g-boundary
of Σ̌.

Homotope φ̌ to

φ̌T : Σ̌ → X/K.

as in Lemma 8.6.
Because no edge in T is a reducing arc for φ̌T , the image of each triangle

T ∈ T lifts to a preferred triangle Tabc in X. Therefore, we can define the map

¨̌φT : Skel(φ̌T ) → X/G ∪ (∂HX)/G,

as in Remark 8.11.
We now proceed as in the proof of Theorem 9.1. By Euler characteristic,

there are 2m− 1 triangles. Therefore, Skel(φ̌T ) has less than 12m ribs.
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Because px,g.x lies entirely within D−1([0, L2 − 1]), none of the ribs intersect
the g-boundary of Skel(φ̌T ) (where the g-boundary of Skel(φ̌T ) is defined in the
obvious way). By Lemma 8.15 there must be at least

min
s
|Kis |Pis

m,

ribs in Skel(φ̌T ). Thus we have

min
s
|Kis |Pis

≤ 12 · 2L2 ,

which is the required contradiction.

This proposition has the following corollary:

Corollary 9.7: Let F ⊂ G be a finite set. Then there is a constant C = C(F )
so that if each |Ki|Pi > C, then the quotient map G → G/K is injective on F .

Proof. We prove the equivalent statement that there exists some C ′ = C ′(F )
so that G → G/K sends no element of F r {1} to 1. (To see the equivalence
notice that C(F ) ≤ C ′((F ∪ F−1)2).)

Without loss of generality, we may assume that any element of F which is
conjugate into some Pi actually lies in Pi. Write F = F1 ∪ F2, where F1 =
F ∩ (∪P) is the set of parabolic elements of F , and F2 = F r F1 is the set of
non-parabolic elements of F . Let S′ = S∪F2. Note that since S is a compatible
generating set, so is S′. We may thus form the space X ′ = X(G,P, S′). By
Theorem 3.25, X ′ is δ′-hyperbolic for some δ′ > 0.

Since S′∩Pi = S∩Pi, the meaning of |Ki|Pi does not change in moving from
X to X ′. We may thus apply Proposition 9.6 in the context of X ′ rather than
X. The preferred path joining 1 to f in X ′ is a single edge for any f ∈ F2. Let
C ′′ = 24 ·23000δ′ . Proposition 9.6 implies that if |Ki|Pi > C ′′ for each i, then no
element of F2 is sent to 1 ∈ G/K. Each f ∈ F1 is contained in some Pif

. Let

C ′′′ = max{|f |Pif
∩S : f ∈ F1}

and let C ′ = max{C ′′, C ′′′}.

Using exactly analogous arguments to those in Proposition 9.6 we can obtain
the following result.

Proposition 9.8: Suppose that G is torsion-free, and that |Ki|Pi > 18 · 2L2

for each i. Suppose that g ∈ G is not conjugate into any Pi ∈ P, and that there
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is some x ∈ X with px,gx ⊂ D−1[0, L2 − 1]. Then there is no h ∈ G, p ∈ P ∈ P
so that hgh−1p−1 ∈ K.

Proof. The constant for |Ki|Pi
changes because we consider a disk with several

punctures. However, we have no control of the length of one of the punctures
(that corresponding to p).

Therefore, if there are m punctures corresponding to elements of the Ki, then
there are 2(m + 1)− 1 = 2m + 1 ≤ 3m triangles.

Otherwise, the proof is just as before.

Remark 9.9: Once we have proved that G/K is hyperbolic relative to the images
of the Pi in P, this will imply that g does not project to a parabolic element of
G/K.

Remark (about torsion) 9.10: In the presence of torsion, many of the arguments
in this section (and later sections) become more difficult to implement. In
particular, the notion of minimality for surfaces needs to be refined. Also, some
of the results in this section need to be reformulated in the presence of torsion.
The main issue here is that parabolics in G may already intersect nontrivially,
and this causes a number of problems.

10. The surgered space

In this section we make the following assumptions: G is a torsion-free group
which is hyperbolic relative to a collection P = {P1, . . . , Pn} of finitely generated
subgroups. The finite set S is a compatible generating set for G with respect
to P. Finally, 〈S,P | R〉 is a finite relative presentation for G.

Recall from Theorem 3.25, that under these assumptions, the space
X(G,P, S) is δ-hyperbolic for some δ. Moreover, given the finite relative pre-
sentation 〈S,P | R〉, we may adjoin 2-cells to X(G,P, S) to form a two-complex
X = X(G,P, S,R) which satisfies a linear combinatorial isoperimetric inequal-
ity.

We further suppose that, for 1 ≤ i ≤ n, we have Ki E Pi. Let K E G be
the normal closure of the union of the Ki. In order to construct a nice model
space for G/K it is essential that the Pi/Ki inject into G/K. We thus make
the standing assumption that:

Assumption 10.1: For each 1 ≤ i ≤ n, |Ki|Pi > 12 · 2L2 .
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The space X contains a copy of the Cayley graph Γ(G,S) of G, and has an
associated depth function D : X → R+ so that Γ(G,S) ⊂ D−1(0).

We now describe a “neutered” version of X, and how to modify it to get a
model for G/K.

Definition 10.2: Let Y = D−1([0, L2]). The boundary of Y is ∂Y = D−1(L2).
If H < G then the boundary of Y/H is the image of ∂Y in Y/H.

Remark 10.3: If the parabolics are not finitely presented, then Y will not be
simply connected. Its fundamental group is generated by those loops in D−1(L2)
which cannot be filled in D−1(L2).

The boundary of Y/G has n connected components which correspond to the
subgroups P1, . . . , Pn, as described in the next few paragraphs.

Let 1 ∈ X/G be the image of the vertices of Γ(G,S) in X/G. For each
1 ≤ i ≤ n there is a unique L2-horoball in X stabilized by Pi, which we denote
Hi. There is a unique vertical path γ̃i joining 1 to (i, 1, 1, L2) ∈ Hi.

Let γi be the image of γ̃i in Y/G ⊂ X/G, and let γ−1
i be γi in the opposite

direction. Let Ti ⊂ Y/G be the component of ∂(Y/G) containing the image
yi of (i, 1, 1, L2). The vertical path γi induces an inclusion of π1(Ti, yi) into
π1(Y/G, 1).

Any loop in Y/G ⊂ X/G based at 1 lifts to a unique path in X starting at
1 and ending at some group element. This gives a well-defined homomorphism
from π1(Y/G, 1) onto G, which maps π1(Ti) onto Pi.

The next two lemmas follow from Assumption 10.1, together with Theorem
9.1.

Lemma 10.4: If c is any loop in a boundary component of Y/K of length less

than 12 ≤ |Ki|Pi/2L2 , then c lifts to a loop in ∂Y .

In particular, there is no loop in ∂(Y/K) consisting of a single edge.

Definition 10.5: Let Z = Z(K) be the 2-complex obtained from Y/K by gluing
a combinatorial horoball onto each component of the boundary of Y/K.

Remark 10.6: The depth function on Y/K naturally extends to a depth function
D on Z.

Lemma 10.7: If each |Ki|Pi > 2L2 , the complex Z is simply connected.
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Proof. The fundamental group of Y is generated by peripheral loops. Note that
we have an exact sequence:

1 −→ π1(Y ) −→ π1(Y/K) −→ K −→ 1

Thus, the fundamental group of Y/K is generated by the fundamental group of
Y together with peripheral loops in Y/K which represent elements of π1(Y/K)
which map to normal generators of K.

Any peripheral loop eventually dies in a horoball, by Lemma 10.4 and Propo-
sition 3.7.

Lemma 10.8: G/K acts freely and properly on Z.

We thus have the following diagram of spaces:

(6) X

²²

Yoo

²²
X/K

²²

Y/K //oo

²²

Z

²²
X/G Y/G //oo Z/(G/K)

Each horizontal arrow in (6) is an inclusion, and each vertical arrow is a covering
map.

We will show in Section 11 that Z satisfies a linear isoperimetric inequality
if the |Ki|Pi are sufficiently large. Together with Proposition 10.12 below, this
will imply that G/K is hyperbolic relative to P ′ = {P1/K1, . . . , Pn/Kn}, and
hence complete the proof of Theorem 7.2.

Lemma 10.9: There is a G/K-equivariant embedding ρ : Z(1) → (X/K)(1).

Proof. The spaces Z and X/K are identical at depths less than or equal to L2.
Thus there is an obvious map at these depths. It is also obvious that vertical
edges in Z can be uniquely associated to vertical edges in X/K.

A horizontal edge e in Z at depth L2 + L corresponds to a path p at depth
L2 in Z of length at most 2L. This path has already been mapped to a path p′

in X/K at depth L2 (still of length at most 2L). The path p′ lifts to a path p̃′

in X (which is still of length at most 2L). The path p̃′ lies above an edge ẽ′ in
X at depth L2 + L, which projects to an edge e′ in X/K. This is ρ(e).
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Let P ′ = {ιi(Pi/Ki) : 1 ≤ i ≤ n}.
Observation 10.10: D−1(0) ⊂ Y/K ⊂ X/K is a relative Cayley complex for
G/K with respect to the finite relative presentation 〈S,P ′ | R〉.

Recall the notation HN from Definition 3.5, where H is a combinatorial
horoball.

Lemma 10.11: Let Ã be a 0-horoball in X, and A its projection in X/K. Then

the intersection A ∩ Y/K is isomorphic to HL2 , where H = H(A ∩D−1(0)).

Proof. We define maps η1 : A ∩ Y/K → HL2 and η2 : HL2 → A ∩ Y/K.
There are obvious bijections on the 0-skeleta, which extend to isomorphisms

at the 0-level, and the vertical edges.
The first thing to note is that horizontal edges in A ∩ Y/K are not loops, by

Assumption 10.1 and Theorem 9.1. It is also true that horizontal edges in HL2

are not loops.
Consider a horizontal edge e ∈ A∩Y/K, at depth L. This lifts to a horizontal

edge ẽ in X at depth L. This can be pushed up to a path p̃ of length at most
2L in D−1(0) ∩ Ã, which project to a path p in D−1(0) ∩ A above e. We have
already defined η1(p), and this path lies above an edge in HL2 at depth L. This
edge is η1(e). Thus we have defined η1 on the 1-skeleton of A ∩ Y/K.

We now define η2 on the 1-skeleton of HL2 . Let e′ be an edge at depth L

in HL2 . There is a path p′ above e′ at the 0-level of HL2 . The path η2(p′) is
already defined. The path η2(p′) lifts to a path in D−1(0) ∩ Ã, and lies above
an edge ẽ in D−1(L) ∩ Ã, which in turn projects to an edge e in A ∩ Y/K. Set
η2(e′) = e.

We have now defined η1 and η2 on the 1-skeleta, and we leave it as an exercise
to prove that they are mutually inverse.

The map η1 obviously extends over the 2-skeleta. Consider then a 2-cell c in
HL2 . Then η2(∂c) is a loop in A ∩ Y/K of length at most 5. Suppose η2(∂c)
lifts to a path σ which is not a loop. Let k ∈ Ki be the element which sends one
endpoint of σ to the other. Then |k|Pi∩S ≤ 5.2L2 , a contradiction. Therefore,
η2(∂c) does lift to a loop in Y , so there is a 2-cell filling η2(∂c). This 2-cell is
η2(c).

The following proposition follows easily from Observations 3.6 and 10.10 and
Lemma 10.11.
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Proposition 10.12: If |Ki|Pi ≥ 12 · 2L2 for all i ∈ {1, . . . , n}, then Z is

equivariantly isomorphic to X(G/K,P ′, S,R).

11. A linear isoperimetric inequality

We have reduced the proof of Theorem 7.2 to proving that the space Z satisfies
a homological isoperimetric inequality. This is proved in Theorem 11.11 below.
The proof of this result breaks neatly into two pieces: a combinatorial piece
(Proposition 11.10), and a homological piece (which becomes Theorem 11.11
below).

We continue to assume that G is a group which is hyperbolic relative to
P = {P1, . . . , Pn}, and that Ki C Pi for each i. We let X = X(G,P, S,R), Y ,
and Z be as described in section 10. In order to slightly simplify the proof of
Proposition 11.10, we replace Assumption 10.1 with the slightly stricter:

Assumption 11.1:

|Ki|Pi ≥ 24 · 2L2 = 24 · 23000δ

for each i.

We show (Theorem 11.11) that under these conditions, the surgered space Z

described in section 10 satisfies a linear homological isoperimetric inequality. It
follows via Theorem 3.25 and Proposition 10.12 that G/K is hyperbolic relative
to the images of the subgroups in P.

Let
ρ : Z(1) → X/K(1)

be the map from Lemma 10.9.

Lemma 11.2: Let w be a 2-cell in Z so that ρ(∂w) does not bound a 2-cell in

X/K. Then w ⊂ D−1[L2 + 1,∞).

Proof. ρ(∂w) must lie in D−1([L2,∞)) in X/K, since X/K and Z are identical
between depth 0 and L2.

If ρ(∂w) does not surround a 2-cell, then it does not lift to a loop in X.
Thus, since the length of ρ(∂w) is at most 5, it lifts to a path in X of length 5,
whose endpoints are in the same orbit under the action of K. Theorem 9.1 and
Assumption 11.1 now imply that these points must lie in the same orbit under
the action of the stabilizer of the horoball in which they lie. Thus there is some
k ∈ Ki so that gkg−1 sends one endpoint to the other for some g.
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Let L be the minimal depth of ρ(∂w). There is a lift of ρ(∂w) starting and
ending at depth L in X, and the endpoints of this lift are joined by a horizontal
path of length at most 4 (as the diligent reader may readily verify). Therefore,
the points at depth 0 above these endpoints may be joined by a horizontal path
of length at most 4·2L. The length of such a path is an upper bound for |k|Pi∩S ,
so by Assumption 11.1 we have 4 · 2L ≥ 24 · 2L2 . In particular, L > L2 + 1 as
required.

Definition 11.3: We refer to 2-cells in Z as described in the above lemma as
missing 2-cells. Note that the map ρ extends to those 2-cells of Z which are
not missing.

Definition 11.4: Suppose that E is a cellulated disk, and that φ : E → Z is
a combinatorial map. A partly missing piece of φ is a component C of
(D ◦φ)−1(L2,∞) so that φ(C) contains some missing 2-cell. Let E∗ ⊆ E be the
complement of the partly missing pieces of E.

Let E be a closed regular neighborhood of E∗ ∪ ∂E whose image under φ

contains no missing 2-cells (we may need to adjust φ by a small homotopy rel
∂E, and re-cellulate, to ensure that E exists). A reducing arc for φ is an map
σ : [0, 1] → E satisfying the following:

(1) σ is an essential arc in E.
(2) The endpoints of σ lie in partly missing pieces of E.
(3) σ is homotopic rel endpoints into D−1(L2,∞), and this homotopy does

not pass over any missing 2-cell.

Remark 11.5: This is slightly different from the way reducing arcs were defined
in Section 8 for a couple of reasons. First, we need to deal with the possibility
that, for instance, two components of ErE∗ have intersecting closures. Second,
we do not want to reduce along arcs with an endpoint in ∂E, because this would
change the loop being filled.

Lemma 11.6: Let E be a disk. Suppose that γ is a combinatorial loop in Z,

and φ : E → Z is a filling of γ. Then there is some φ′ : E → Z so that each

partly missing piece of φ′ is simply connected, and the number of partly missing

pieces of φ′ is no more than the number of partly missing pieces of φ.

Proof. Fix a partly missing piece C, and let ξ be the component of the boundary
of E which lies in C and contains all other components of ∂E ∩ C. The loop
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φ(ξ) lies entirely in Z r Y , and can thus be filled there. We set φ′ = φ outside
of ξ, and set φ′ equal to this new filling inside ξ.

Lemma 11.7: Let E be a disk. Suppose that γ is a combinatorial loop in Z,

and φ : E → Z is a filling of γ chosen so that the number of partly missing

pieces of E is minimized. Then there are no reducing arcs for φ.

Proof. If there is a reducing arc σ, we may reduce the number of partly missing
pieces as follows:

Suppose first that the arc joins distinct partly missing pieces. Then we
may cut open E along the arc and add in two copies of the homotopy into
D−1[L2,∞), thus combining the two partly missing pieces into one. Since the
homotopy passes over no missing 2-cells, we have decreased the number of partly
missing pieces.

Next suppose that the arc σ joins some partly missing piece C to itself. Again
we can cut open along σ and insert the homotopy, thus creating a non-simply
connected partly missing pieces. By Lemma 11.6, this non-simply connected
component can be replaced with a simply connected one. Since σ was essential,
it enclosed at least one partly missing piece other than C, and so the modified
map has fewer partly missing pieces than it did before.

Definition 11.8: If φ is a map of a disk E into Z, then ρ ◦ φ|E∗∪∂E can be
extended to a proper map of a punctured disk

φ̌ : Ě∗ → X/K.

The surface Ě∗ can be obtained from E by removing a point from the interior
of each partly missing piece. The map φ̌ is then defined to be equal to ρ ◦ φ on
E∗ ∪ ∂E. The complement of E∗ ∪ ∂E in Ě∗ is a union of annuli; the map φ̌

is defined so that the image of these annuli consists entirely of vertical squares,
just as in Definition 8.2.

The proof of Lemma 8.6 easily adapts to a proof of the following:

Lemma 11.9: Let E be a disk, and let φ : E → Z be a map with no reducing

arcs, so that φ has at least one partly missing piece and φ(∂E)∩ΓK is nonempty.

Let T be a partially ideal triangulation of Ě∗ with a single vertex v0 ∈ ∂E =
∂(Ě∗) satisfying φ(v0) ∈ ΓK . Then φ̌ is properly homotopic to a map

φ̌T : Ě∗ → X/K
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which sends each edge of T to the image in X/K of a preferred path in X.

The key combinatorial step in proving Theorem 11.11 is the following:

Proposition 11.10: There is a constant C = C(δ) > 0 so that the following

holds: Let w : S1 → Z be a combinatorial loop, and suppose that

φ : E → Z

is a filling of this loop by a disk E, and that this filling has no reducing arcs. If

φ has m ≥ 1 partly missing pieces, then |w|1 ≥ Cm.

Proof. We will show that C can be chosen equal to min{1, L2
2(λ+ε)}, where λ

and ε are the constants of quasi-geodesicity from Corollary 5.14. If w does not
intersect ΓK = Γ(G,S)/K, then w can be filled with a disk containing at most
one partly missing piece. We may therefore assume that w(1) ∈ ΓK ⊂ Z.

Let γ be a loop homotopic (rel 1) to the loop ρ ◦w in X/K, so that γ lifts to
a preferred path γ̃ in X. Let g ∈ G be the unique group element which sends
the initial point of γ̃ to the terminal point.

By Corollary 5.14, |γ|1 = |γ̃|1 ≤ λd(1, g) + ε, where d(1, g) is the distance
from 1 to g in X. As |w|1 is bounded below by d(1, g), we have

|w|1 ≥ 1
λ + ε

|γ|1.

It thus suffices to bound |γ|1 below linearly in terms of m. We remark that
γ(1) = (ρ ◦ w)(1) ∈ ΓK ⊂ X/K.

By assumption, we have a map φ : E → Z of a disk into Z with no reducing
arcs. Let φ̌ : Ě∗ → X/K be the proper map from Definition 11.8 of an m-times
punctured disk into X/K. Note that φ̌|∂(Ě∗) = ρ ◦ w.

Let T be a (partially ideal) triangulation of Ě∗ with one vertex the preimage
of (ρ ◦ w)(1) and all other vertices ideal, and one edge on the boundary. This
induces an obvious triangulation T ′ of the disk E.

By Lemma 11.9, φ̌ is homotopic to φ̌T : Ě∗ → X/K so that φ̌T |∂Ě∗ = γ, and
all edges of T map to paths in X/K which lift to preferred paths in X.

We now consider the map

¨̌φT : Skel(φ̌T ) → X/G ∪ (∂HX)/G,

as in Remark 8.11.



424 D. GROVES AND J. F. MANNING Isr. J. Math.

Let p be a puncture on Ě∗. The link Lk(p) in Skel(φ̌T ) is a loop and we have

¨̌φT |Lk(p) : S1 → D−1([L2,∞)) ⊂ X/G.

This loop represents a conjugacy class in Pi for some i, and this class is contained
in Ki, by Lemma 8.15.

A puncture p is called interior if Lk(p) is composed entirely of ribs and
ligaments, and exterior otherwise. The puncture p corresponds to a vertex of
the triangulation T ′ of E, which we also describe as interior or exterior (see
Figure 30).

Figure 30. This picture shows a possible (actually, impossible)
picture of Skel(φ̌T ), with two interior punctures, and the rest
exterior. Ribs and ligaments are shown in bold. Each of the
exterior punctures contributes at least 2 points to (D ◦
γ̃)−1(L2).

Let VI be the number of interior vertices of T ′, and let V∂ = m+1−VI be the
number of exterior vertices. It is clear from the definitions that the cardinality
of (D◦ γ̃)−1(L2) is at least 2(V∂−1). The set D−1(L2) partitions γ̃ into subseg-
ments, which alternate between lying in D−1[0, L2] and lying in D−1[L2,∞).
As the initial and terminal points of γ̃ lie in D−1(0), those subsegments of γ̃

with image in D−1[0, L2] must have length at least L2 (In fact, all but the ini-
tial and terminal subsegments must have length at least 2L2, as they must pass
between distinct L2-horoballs.). There are at least V∂ such subsegments, and
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so

(7) |γ|1 = |γ̃|1 ≥ V∂L2 = (m + 1− VI)L2 > (m− VI)L2.

In order to bound |γ|1 below by a linear function of m, it therefore suffices to
show that VI is at most some definite proportion of m (bounded away from 1).

Let R be the number of ribs in Skel(φ̌T ). Then R ≤ 6(2m− 1), by Corollary
5.39. However, R ≥ 24VI , by Assumption 11.1 and Lemma 8.15.

This implies that VI < 1
2m. By (7), we deduce that

|γ|1 ≥ L2

2
m,

and hence

|w|1 ≥ L2

2(λ + ε)
m.

11.1. Proof of Theorem 7.2. We make the same assumptions about G, P,
S, R and X stated at the beginning of the last section.

Theorem 11.11: If minj{|Kj |Pj} > 24 · 2L2 = 24 · 23000δ, then Z satisfies a

homological linear isoperimetric inequality in the sense of Definition 2.28.

Proof. The idea behind the proof is as follows. Take a loop in Z, which is filled
by some disk. Attempt to move this disk to X/K, fail, and find a punctured
disk mapping into X/K. Triangulate, lift and straighten the triangles, project
back to X/K, attempt to transfer back to Z, fail and fill the failures.

By Theorem 2.26, it suffices to show that there is a constant M > 0 so that
any simple loop c bounds a rational 2-chain w with

|w|1 ≤ M |c|1.

Let c be a simple (combinatorial) loop in Z. If c lies entirely inside a single
horoball, we may fill with a disk of area at most 3|c|1 by Proposition 3.7. We
may thus suppose that c(1) ∈ D−1(0) ⊂ Z. Thus ρ ◦ c lifts to a path c̃ in
X between two (not necessarily distinct) vertices g and h of the Cayley graph
Γ(G,S) ⊂ X. Consider the 1-chain c̃ corresponding to the path c̃. Then c−qg,h

is a 1-cycle. By Proposition 6.6, |qg,h|1 ≤ 6000δ2d(g, h) ≤ 6000δ2|c|1. Hence,
if MX is the homological isoperimetric constant for X, there is a 2-chain ω̃ so
that ∂ω̃ = c̃− qg,h, and |ω̃|1 ≤ MX

(
6000δ2 + 1

)|c|1.
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As Z is simply connected, there is a combinatorial map of a cellulated disk
E

φ : E → Z

so that φ|∂E is c. We may suppose that the map φ has the minimal possible
number of partly missing pieces in the sense of Definition 11.4. By Lemma
11.7, φ has no reducing arcs. By Proposition 11.10, the number of partly
missing pieces is at most C−1|c|, for a C > 0 which depends only on δ. Thus
we can triangulate the punctured surface Ě∗ defined in Definition 11.8 with a
triangulation T consisting of fewer than 2C−1|c| triangles. Let φ̌T |e be the map
from Lemma 11.9. This induces, for each triangle T ∈ T , a preferred triangle
ψT : ∂∆ → X ∪ ∂HX.

Suppose that T ∈ T , and that the image of the vertices of T are a, b, and
c (with order coming from the orientation of T ). Let cT = cabc, the 1-chain
defined in Definition 6.8, and let ωT = ωabc be the 2-chain as in Corollary 6.11.
Let ξ̃ =

∑
T∈T ωT . Each ωT satisfies |ωT |1 ≤ MXT1 by Corollary 6.11.

Now let µ = π](ω̃ + ξ̃), and let µthick be the 2-chain which comes from
including only those 2-cells which lie entirely in Y = D−1[0, L2]. Note that

|µthick|1 ≤ |µ|1 ≤ |ω̃|1 + |ξ̃|1
≤ [

(MX(6000δ2 + 1)) + 2C−1T1MX

]|c|1
Let Mµ = (MX(6000δ2 + 1) + 2C−1T1MX .

Since µthick is supported entirely in Y , it determines a 2-chain µZ in Z.
Furthermore, cthin := c− ∂µZ satisfies the following:

(1) The support of cthin lies entirely in D−1[L2,∞) ⊂ Z, and
(2) |cthin|1 ≤ |c|1+|∂µZ | ≤ (1+MMµ)|c|1, where M is the maximum length

of the boundary of a 2-cell in Z (which is the same as that maximum
length in X).

Thus by Proposition 3.7 and Theorem 2.26 there is a 2-chain ζ satisfying

(1) ∂ζ = cthin, and
(2) |ζ|1 ≤ 3|cthin|1 ≤ 3(1 + MMµ)|c|1.

Finally, we note that ∂(µZ + ζ) = c and |µZ + ζ|1 ≤ |µZ |1 + |ζ|1 ≤
(Mµ + 3 + 3MMµ)|c|1. This completes the proof of Theorem 11.11, and hence
also of Theorem 7.2.

We close by proving that G/K is nonelementary.
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Theorem 11.12: Suppose that G is torsion-free and that |Ki|Pi > 24 · 2L2

for each i. Then G/K is non-elementary relatively hyperbolic (relative to

{ιi(Pi/Ki)}i.

Proof. If all parabolics are finite, then G/K is hyperbolic.
By Theorem 3.33, there is a hyperbolic element g ∈ G with an axis which

is entirely contained in D−1[0, 19δ]. If x ∈ X is contained in this axis, then
for all j, the preferred path px,gj .x is the geodesic between these points (since
19δ + δ ≤ L1). Therefore, by Proposition 9.6, none of these elements die in
G/K. Therefore, G/K is infinite. Furthermore, by Proposition 9.8, g does not
project to a parabolic element of G/K. Thus G/K is not equal to any of the
ιi(Pi/Ki). By Theorem 9.3, the intersection of two distinct parabolic subgroups
of G/K is trivial.

Suppose G/K is virtually cyclic. Then G/K has a finite normal subgroup
N with quotient either infinite cyclic or infinite dihedral. In fact, N must
be contained in every parabolic; and so it is trivial. However, the parabolic
subgroups of G/K have size (much) greater than 2.

We may now suppose that some ιi(Pi/Ki) is infinite. We have already seen
that G/K does not equal ιi(Pi/Ki) for any i, so Theorem 3.34 implies that
G/K is non-elementary relatively hyperbolic.
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